- -

Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Trull, Óscar es_ES
dc.contributor.author García-Díaz, J. Carlos es_ES
dc.contributor.author Troncoso, Alicia es_ES
dc.date.accessioned 2020-12-01T04:32:33Z
dc.date.available 2020-12-01T04:32:33Z
dc.date.issued 2019-03-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156110
dc.description.abstract [EN] Forecasting electricity demand through time series is a tool used by transmission system operators to establish future operating conditions. The accuracy of these forecasts is essential for the precise development of activity. However, the accuracy of the forecasts is enormously subject to the calendar effect. The multiple seasonal Holt-Winters models are widely used due to the great precision and simplicity that they offer. Usually, these models relate this calendar effect to external variables that contribute to modification of their forecasts a posteriori. In this work, a new point of view is presented, where the calendar effect constitutes a built-in part of the Holt-Winters model. In particular, the proposed model incorporates discrete-interval moving seasonalities. Moreover, a clear example of the application of this methodology to situations that are difficult to treat, such as the days of Easter, is presented. The results show that the proposed model performs well, outperforming the regular Holt-Winters model and other methods such as artificial neural networks and Exponential Smoothing State Space Model with Box-Cox Transformation, ARMA Errors, Trend and Seasonal Components (TBATS) methods. es_ES
dc.description.sponsorship The authors would like to thank the Spanish Ministry of Economy and Competitiveness for the support under project TIN2017-8888209C2-1-R. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Time series es_ES
dc.subject Forecasting es_ES
dc.subject Exponential smoothing es_ES
dc.subject Electricity demand es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en12061083 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88209-C2-1-R/ES/BIG DATA STREAMING: ANALISIS DE DATOS MASIVOS CONTINUOS. MODELOS PREDICTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Trull, Ó.; García-Díaz, JC.; Troncoso, A. (2019). Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter. Energies. 12(6):1-16. https://doi.org/10.3390/en12061083 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en12061083 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\386252 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Garrués-Irurzun, J., & López-García, S. (2009). Red Eléctrica de España S.A.: Instrument of regulation and liberalization of the Spanish electricity market (1944–2004). Renewable and Sustainable Energy Reviews, 13(8), 2061-2069. doi:10.1016/j.rser.2009.01.028 es_ES
dc.description.references Roldan-Fernandez, J., Gómez-Quiles, C., Merre, A., Burgos-Payán, M., & Riquelme-Santos, J. (2018). Cross-Border Energy Exchange and Renewable Premiums: The Case of the Iberian System. Energies, 11(12), 3277. doi:10.3390/en11123277 es_ES
dc.description.references Contreras, J., Espinola, R., Nogales, F. J., & Conejo, A. J. (2003). ARIMA models to predict next-day electricity prices. IEEE Transactions on Power Systems, 18(3), 1014-1020. doi:10.1109/tpwrs.2002.804943 es_ES
dc.description.references Juberias, G., Yunta, R., Garcia Moreno, J., & Mendivil, C. (1999). A new ARIMA model for hourly load forecasting. 1999 IEEE Transmission and Distribution Conference (Cat. No. 99CH36333). doi:10.1109/tdc.1999.755371 es_ES
dc.description.references Bianco, V., Manca, O., & Nardini, S. (2009). Electricity consumption forecasting in Italy using linear regression models. Energy, 34(9), 1413-1421. doi:10.1016/j.energy.2009.06.034 es_ES
dc.description.references Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society, 54(8), 799-805. doi:10.1057/palgrave.jors.2601589 es_ES
dc.description.references Taylor, J. W. (2010). Triple seasonal methods for short-term electricity demand forecasting. European Journal of Operational Research, 204(1), 139-152. doi:10.1016/j.ejor.2009.10.003 es_ES
dc.description.references Ko, C.-N., & Lee, C.-M. (2013). Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter. Energy, 49, 413-422. doi:10.1016/j.energy.2012.11.015 es_ES
dc.description.references Rana, M., & Koprinska, I. (2016). Forecasting electricity load with advanced wavelet neural networks. Neurocomputing, 182, 118-132. doi:10.1016/j.neucom.2015.12.004 es_ES
dc.description.references Baliyan, A., Gaurav, K., & Mishra, S. K. (2015). A Review of Short Term Load Forecasting using Artificial Neural Network Models. Procedia Computer Science, 48, 121-125. doi:10.1016/j.procs.2015.04.160 es_ES
dc.description.references Yang, Z., Ce, L., & Lian, L. (2017). Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods. Applied Energy, 190, 291-305. doi:10.1016/j.apenergy.2016.12.130 es_ES
dc.description.references Ghadimi, N., Akbarimajd, A., Shayeghi, H., & Abedinia, O. (2018). Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting. Energy, 161, 130-142. doi:10.1016/j.energy.2018.07.088 es_ES
dc.description.references Troncoso Lora, A., Riquelme Santos, J. M., Riquelme, J. C., Gómez Expósito, A., & Martínez Ramos, J. L. (2004). Time-Series Prediction: Application to the Short-Term Electric Energy Demand. Lecture Notes in Computer Science, 577-586. doi:10.1007/978-3-540-25945-9_57 es_ES
dc.description.references Martinez Alvarez, F., Troncoso, A., Riquelme, J. C., & Aguilar Ruiz, J. S. (2011). Energy Time Series Forecasting Based on Pattern Sequence Similarity. IEEE Transactions on Knowledge and Data Engineering, 23(8), 1230-1243. doi:10.1109/tkde.2010.227 es_ES
dc.description.references Cancelo, J. R., Espasa, A., & Grafe, R. (2008). Forecasting the electricity load from one day to one week ahead for the Spanish system operator. International Journal of Forecasting, 24(4), 588-602. doi:10.1016/j.ijforecast.2008.07.005 es_ES
dc.description.references TORRÓ, H., MENEU, V., & VALOR, E. (2003). Single Factor Stochastic Models with Seasonality Applied to Underlying Weather Derivatives Variables. The Journal of Risk Finance, 4(4), 6-17. doi:10.1108/eb022969 es_ES
dc.description.references Darbellay, G. A., & Slama, M. (2000). Forecasting the short-term demand for electricity. International Journal of Forecasting, 16(1), 71-83. doi:10.1016/s0169-2070(99)00045-x es_ES
dc.description.references Moral-Carcedo, J., & Vicéns-Otero, J. (2005). Modelling the non-linear response of Spanish electricity demand to temperature variations. Energy Economics, 27(3), 477-494. doi:10.1016/j.eneco.2005.01.003 es_ES
dc.description.references Erişen, E., Iyigun, C., & Tanrısever, F. (2017). Short-term electricity load forecasting with special days: an analysis on parametric and non-parametric methods. Annals of Operations Research. doi:10.1007/s10479-017-2726-6 es_ES
dc.description.references Arora, S., & Taylor, J. W. (2013). Short-Term Forecasting of Anomalous Load Using Rule-Based Triple Seasonal Methods. IEEE Transactions on Power Systems, 28(3), 3235-3242. doi:10.1109/tpwrs.2013.2252929 es_ES
dc.description.references Arora, S., & Taylor, J. W. (2018). Rule-based autoregressive moving average models for forecasting load on special days: A case study for France. European Journal of Operational Research, 266(1), 259-268. doi:10.1016/j.ejor.2017.08.056 es_ES
dc.description.references Bermúdez, J. D. (2013). Exponential smoothing with covariates applied to electricity demand forecast. European J. of Industrial Engineering, 7(3), 333. doi:10.1504/ejie.2013.054134 es_ES
dc.description.references Göb, R., Lurz, K., & Pievatolo, A. (2013). Electrical load forecasting by exponential smoothing with covariates. Applied Stochastic Models in Business and Industry, 29(6), 629-645. doi:10.1002/asmb.2008 es_ES
dc.description.references Chatfield, C. (1978). The Holt-Winters Forecasting Procedure. Applied Statistics, 27(3), 264. doi:10.2307/2347162 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem