Mostrar el registro sencillo del ítem
dc.contributor.author | Guaita-Pradas, Inmaculada | es_ES |
dc.contributor.author | Marqués Pérez, Inmaculada | es_ES |
dc.contributor.author | Gallego Salguero, Aurea Cecilia | es_ES |
dc.contributor.author | Segura García Del Río, Baldomero | es_ES |
dc.date.accessioned | 2020-12-02T04:31:25Z | |
dc.date.available | 2020-12-02T04:31:25Z | |
dc.date.issued | 2019-12 | es_ES |
dc.identifier.issn | 0167-6369 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156258 | |
dc.description.abstract | [EN] Solar energy generated by grid-connected photovoltaic (GCPV) systems is considered an important alternative electric energy source because of its clean energy production system, easy installation, and low operating and maintenance costs. This has led to it becoming more popular compared with other resources. However, finding optimal sites for the construction of solar farms is a complex task with many factors to be taken into account (environmental, social, legal and political, technical-economic, etc.), which classic site selection models do not address efficiently. There are few studies on the criteria that should be used when identifying sites for solar energy installations (large grid-connected photovoltaic systems which have more than 100 kWp of installed capacity). It is therefore essential to change the way site selection processes are approached and to seek new methodologies for location analysis. A geographic information system (GIS) is a tool which can provide an effective solution to this problem. Here, we combine legal, political, and environmental criteria, which include solar radiation intensity, local physical terrain, environment, and climate, as well as location criteria such as the distance from roads and the nearest power substations. Additionally, we use GIS data (time series of solar radiation, digital elevation models (DEM), land cover, and temperature) as further input parameters. Each individual site is assessed using a unique and cohesive approach to select the most appropriate locations for solar farm development in the Valencian Community, a Spanish region in the east of Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Environmental Monitoring and Assessment | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Solar energy | es_ES |
dc.subject | Solar radiation | es_ES |
dc.subject | Solar farms | es_ES |
dc.subject | Grid connection | es_ES |
dc.subject.classification | ECONOMIA, SOCIOLOGIA Y POLITICA AGRARIA | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.subject.classification | ECONOMIA FINANCIERA Y CONTABILIDAD | es_ES |
dc.title | Analyzing territory for the sustainable development of solar photovoltaic power using GIS databases | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10661-019-7871-8 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials | es_ES |
dc.description.bibliographicCitation | Guaita-Pradas, I.; Marqués Pérez, I.; Gallego Salguero, AC.; Segura García Del Río, B. (2019). Analyzing territory for the sustainable development of solar photovoltaic power using GIS databases. Environmental Monitoring and Assessment. 191(12):1-17. https://doi.org/10.1007/s10661-019-7871-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10661-019-7871-8 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 191 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.pmid | 31745665 | es_ES |
dc.identifier.pmcid | PMC6864026 | es_ES |
dc.relation.pasarela | S\402602 | es_ES |
dc.description.references | Afzali, A., Sabri, S., Rashid, M., & Samani, J. M. V. (2014). Inter-municipal landfill site selection using analytic network process. Water Resources Management, 28(8), 217–2194. | es_ES |
dc.description.references | Akıncı, H., Özalp, A. Y., & Turgut, B. (2013). Agricultural land use suitability analysis using GIS and AHP technique. Computers and Electronics in Agriculture, 97, 71–82. | es_ES |
dc.description.references | Al-Ruzouq, R., Shanableh, A., Omar, M., & Al-Khayyat, G. (2018). Macro and micro geo-spatial environment consideration for landfill site selection in Sharjah, United Arab Emirates. Environmental Monitoring and Assessment, 190(3), 147. | es_ES |
dc.description.references | Cavazzi, S., & Dutton, A. G. (2016). An Offshore Wind Energy Geographic Information System (OWE-GIS) for assessment of the UK’s offshore wind energy potential. Renewable Energy, 87, 212–228. | es_ES |
dc.description.references | Cetin, M., Zeren, I., Sevik, H., Cakir, C., & Akpinar, H. (2018). A study on the determination of the natural park’s sustainable tourism potential. Environmental Monitoring and Assesment, 190(3), 167. | es_ES |
dc.description.references | Chakraborty, S., Sadhu, P., & Pal, N. (2015). Technical mapping of solar PV for ISM -an approach toward green campus. Energy Science & Engineering, 3(3), 196–206. https://doi.org/10.1002/ese3.65. | es_ES |
dc.description.references | Chakraborty, S., Kumar, R., Haldkar, A. K., & Shishuranjan. (2017). Mathematical method to find best suited PV technology for different climatic zones of India. International Journal of Energy and Environmental Engineering, 8(2), 153–166. | es_ES |
dc.description.references | Chiabrando, R., Fabrizio, E., & Garnero, G. (2009). The territorial and landscape impacts of photovoltaic systems: definition of impacts and assessment of the glare risk. Renewable and Sustainable Energy Reviews, 13(9), 2441–2451. | es_ES |
dc.description.references | Fagbohun, B. J. (2018). Integrating GIS and multi-influencing factor technique for delineation of potential groundwater recharge zones in parts of Ilesha schist belt, southwestern Nigeria. Environmental Earth Sciences, 77, 69. | es_ES |
dc.description.references | Fung, T., & Wong, F. K. K. (2007). Ecotourism planning using multiple criteria evaluation with GIS. Geocarto International, 22(2), 87–105. | es_ES |
dc.description.references | Galacho-Jiménez, F. B., & Ocaña-Ocaña, C. (2006). Tratamiento con SIG y técnicas de evaluación multicriterio de la capacidad de acogida del territorio para usos urbanísticos: residenciales y comerciales. In Proceedings of the 12th National Congress on Geographic Information Systems (pp. 1509–1525), Granada, 19th-22nd September 2006. | es_ES |
dc.description.references | Gastli, A., & Charabi, Y. (2010). Siting of large PV Farms in Al-Batinah Region of Oman. In 2010 IEEE International Energy Conference Proceedings (pp. 548–552), Manama, 2010. | es_ES |
dc.description.references | Geneletti, D. (2013). Assessing the impact of alternative land-use zoning policies on future ecosystem services. Environmental Impact Assessment Review, 40, 25–35. | es_ES |
dc.description.references | Goleiji, E., Hosseini, S. M., Khorasani, N., & Monavari, S. M. (2017). Forest fire risk assessment-an integrated approach based on multicriteria evaluation. Environmental Monitoring and Assessment, 189, 612. | es_ES |
dc.description.references | Ismail, M., Abdel Ghaffar, M., & Azzam, M. (2012). GIS application to identify the potential for certain irrigated agriculture uses on some soils in Western Desert, Egypt. The Egyptian Journal of Remote Sensing and Space Sciences, 15, 39–51. | es_ES |
dc.description.references | Janke, J. R. (2010). Multicriteria GIS modeling of wind and solar farms in Colorado. Renewable Energy, 35(10), 2228–2234. | es_ES |
dc.description.references | Jo, J., & Otanicar, T. (2011). A hierarchical methodology for the mesoscale assessment of building integrated roof solar energy systems. Renewable Energy, 36(11), 2992–3000. | es_ES |
dc.description.references | Khodaparast, M., Rajabi, A., & Edalat, A. (2018). Municipal solid waste landfill siting by using GIS and analytical hierarchy process (AHP): a case study in Qom city, Iran. Environmental Earth Sciences, 77, 52. | es_ES |
dc.description.references | Law 10/2004 of December 9th, of the Valencian Community on protected undeveloped land. Official Valencian Community Bulletin (DOGV) No. 4900, enacted by the Valencian Community Government, Valencia, 2004 [in Spanish]. | es_ES |
dc.description.references | Law 42/2007 of December 13th, on natural heritage and biodiversity. Official State Bulletin (BOE) No. 299, enacted by the Spanish Ministry of Agriculture, Food and Environment, Madrid, 2007 [in Spanish]. | es_ES |
dc.description.references | Maleki, A., Pourfayaz, F., Hafeznia, H., & Rosen, M. A. (2017). A novel framework for optimal photovoltaic size and location in remote areas using a hybrid method: a case study of eastern Iran. Energy Conversion and Management, 153, 129–143. | es_ES |
dc.description.references | Mendas, A., & Delali, A. (2012). Integration of MultiCriteria Decision Analysis in GIS to develop land suitability for agriculture: application to durum wheat cultivation in the region of Mleta in Algeria. Computers and Electronics in Agriculture, 83, 1117–1126. | es_ES |
dc.description.references | Nemet, G. F. (2006). Beyond the learning curve: factors influencing cost reductions in photovoltaics. Energy Policy, 34(17), 3218–3232. | es_ES |
dc.description.references | Ocaña-Ocaña, C., & Galacho-Jiménez, F. B. (2002). Un modelo de aplicación de SIG y evaluación multicriterio al análisis de la capacidad del territorio en relación a funciones turísticas. In: Proceedings of the 4th National Congress on Tourism and Information and Communication Technologies (Turitec), Malaga, 2002. | es_ES |
dc.description.references | Red Eléctrica de España. (2018). Red Eléctrica de España (REE) corporate group website. Retrieved from https://www.ree.es/es/estadisticas-del-sistema-electrico/3015/all Accessed 15 June 2018. | es_ES |
dc.description.references | Reisi, M., Afzali, A., & Aye, L. (2018). Applications of analytical hierarchy process (AHP) and analytical network process (ANP) for industrial site selections in Isfahan, Iran. Environmental Earth Sciences, 77, 537. | es_ES |
dc.description.references | Sánchez-Lozano, J., García-Cascales, M., & Lamata, M. (2016). Comparative TOPSIS-ELECTRE TRI methods for optimal sites for photovoltaic solar farms. Case study in Spain. Journal of Cleaner Production, 127, 387–398. | es_ES |
dc.description.references | Simao, A., Densham, P. J., & Haklay, M. (2009). Web-based GIS for collaborative planning and public participation: an application to the strategic planning of wind farm sites. Journal of Environmental Management, 90, 2027–2040. | es_ES |
dc.description.references | Skoplaki, E., Boudouvis, A., & Palyvos, J. (2008). A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Solar Energy Materials & Solar Cells, 92, 1393–1402. | es_ES |
dc.description.references | Song, D., Jiao, H., & Te Fan, C. (2015). Overview of the photovoltaic technology status and perspective in China. Renewable and Sustainable Energy Reviews, 48, 848–856. | es_ES |
dc.description.references | Trappey, A. J., et al. (2016). The determinants of photovoltaic system costs: an evaluation using a hierarchical learning curve model. Journal of Cleaner Production, 112(2), 1709–1716. | es_ES |
dc.description.references | Wang, S., et al. (2016). Selecting photovoltaic generation sites in Tibet using remote sensing and geographic analysis. Solar Energy, 133, 85–93. | es_ES |
dc.description.references | Xin-gang, Z., Guan, W., & Yahui, Y. (2015). The turning point of solar photovoltaic industry in China: will it come? Renewable and Sustainable Energy Reviews, 41, 178–188. | es_ES |
dc.description.references | Yu, C., van Sark, W., & Alsema, E. (2011). Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects. Renewable and Sustainable Energy Reviews, 15(1), 324–337. | es_ES |
dc.description.references | Yushchenko, A., et al. (2018). GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa. Renewable and Sustainable Energy Reviews, 81(2), 2088–2103. | es_ES |