- -

Analyzing territory for the sustainable development of solar photovoltaic power using GIS databases

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analyzing territory for the sustainable development of solar photovoltaic power using GIS databases

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guaita-Pradas, Inmaculada es_ES
dc.contributor.author Marqués Pérez, Inmaculada es_ES
dc.contributor.author Gallego Salguero, Aurea Cecilia es_ES
dc.contributor.author Segura García Del Río, Baldomero es_ES
dc.date.accessioned 2020-12-02T04:31:25Z
dc.date.available 2020-12-02T04:31:25Z
dc.date.issued 2019-12 es_ES
dc.identifier.issn 0167-6369 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156258
dc.description.abstract [EN] Solar energy generated by grid-connected photovoltaic (GCPV) systems is considered an important alternative electric energy source because of its clean energy production system, easy installation, and low operating and maintenance costs. This has led to it becoming more popular compared with other resources. However, finding optimal sites for the construction of solar farms is a complex task with many factors to be taken into account (environmental, social, legal and political, technical-economic, etc.), which classic site selection models do not address efficiently. There are few studies on the criteria that should be used when identifying sites for solar energy installations (large grid-connected photovoltaic systems which have more than 100 kWp of installed capacity). It is therefore essential to change the way site selection processes are approached and to seek new methodologies for location analysis. A geographic information system (GIS) is a tool which can provide an effective solution to this problem. Here, we combine legal, political, and environmental criteria, which include solar radiation intensity, local physical terrain, environment, and climate, as well as location criteria such as the distance from roads and the nearest power substations. Additionally, we use GIS data (time series of solar radiation, digital elevation models (DEM), land cover, and temperature) as further input parameters. Each individual site is assessed using a unique and cohesive approach to select the most appropriate locations for solar farm development in the Valencian Community, a Spanish region in the east of Spain. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Environmental Monitoring and Assessment es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Solar energy es_ES
dc.subject Solar radiation es_ES
dc.subject Solar farms es_ES
dc.subject Grid connection es_ES
dc.subject.classification ECONOMIA, SOCIOLOGIA Y POLITICA AGRARIA es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.subject.classification ECONOMIA FINANCIERA Y CONTABILIDAD es_ES
dc.title Analyzing territory for the sustainable development of solar photovoltaic power using GIS databases es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10661-019-7871-8 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials es_ES
dc.description.bibliographicCitation Guaita-Pradas, I.; Marqués Pérez, I.; Gallego Salguero, AC.; Segura García Del Río, B. (2019). Analyzing territory for the sustainable development of solar photovoltaic power using GIS databases. Environmental Monitoring and Assessment. 191(12):1-17. https://doi.org/10.1007/s10661-019-7871-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10661-019-7871-8 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 191 es_ES
dc.description.issue 12 es_ES
dc.identifier.pmid 31745665 es_ES
dc.identifier.pmcid PMC6864026 es_ES
dc.relation.pasarela S\402602 es_ES
dc.description.references Afzali, A., Sabri, S., Rashid, M., & Samani, J. M. V. (2014). Inter-municipal landfill site selection using analytic network process. Water Resources Management, 28(8), 217–2194. es_ES
dc.description.references Akıncı, H., Özalp, A. Y., & Turgut, B. (2013). Agricultural land use suitability analysis using GIS and AHP technique. Computers and Electronics in Agriculture, 97, 71–82. es_ES
dc.description.references Al-Ruzouq, R., Shanableh, A., Omar, M., & Al-Khayyat, G. (2018). Macro and micro geo-spatial environment consideration for landfill site selection in Sharjah, United Arab Emirates. Environmental Monitoring and Assessment, 190(3), 147. es_ES
dc.description.references Cavazzi, S., & Dutton, A. G. (2016). An Offshore Wind Energy Geographic Information System (OWE-GIS) for assessment of the UK’s offshore wind energy potential. Renewable Energy, 87, 212–228. es_ES
dc.description.references Cetin, M., Zeren, I., Sevik, H., Cakir, C., & Akpinar, H. (2018). A study on the determination of the natural park’s sustainable tourism potential. Environmental Monitoring and Assesment, 190(3), 167. es_ES
dc.description.references Chakraborty, S., Sadhu, P., & Pal, N. (2015). Technical mapping of solar PV for ISM -an approach toward green campus. Energy Science & Engineering, 3(3), 196–206. https://doi.org/10.1002/ese3.65. es_ES
dc.description.references Chakraborty, S., Kumar, R., Haldkar, A. K., & Shishuranjan. (2017). Mathematical method to find best suited PV technology for different climatic zones of India. International Journal of Energy and Environmental Engineering, 8(2), 153–166. es_ES
dc.description.references Chiabrando, R., Fabrizio, E., & Garnero, G. (2009). The territorial and landscape impacts of photovoltaic systems: definition of impacts and assessment of the glare risk. Renewable and Sustainable Energy Reviews, 13(9), 2441–2451. es_ES
dc.description.references Fagbohun, B. J. (2018). Integrating GIS and multi-influencing factor technique for delineation of potential groundwater recharge zones in parts of Ilesha schist belt, southwestern Nigeria. Environmental Earth Sciences, 77, 69. es_ES
dc.description.references Fung, T., & Wong, F. K. K. (2007). Ecotourism planning using multiple criteria evaluation with GIS. Geocarto International, 22(2), 87–105. es_ES
dc.description.references Galacho-Jiménez, F. B., & Ocaña-Ocaña, C. (2006). Tratamiento con SIG y técnicas de evaluación multicriterio de la capacidad de acogida del territorio para usos urbanísticos: residenciales y comerciales. In Proceedings of the 12th National Congress on Geographic Information Systems (pp. 1509–1525), Granada, 19th-22nd September 2006. es_ES
dc.description.references Gastli, A., & Charabi, Y. (2010). Siting of large PV Farms in Al-Batinah Region of Oman. In 2010 IEEE International Energy Conference Proceedings (pp. 548–552), Manama, 2010. es_ES
dc.description.references Geneletti, D. (2013). Assessing the impact of alternative land-use zoning policies on future ecosystem services. Environmental Impact Assessment Review, 40, 25–35. es_ES
dc.description.references Goleiji, E., Hosseini, S. M., Khorasani, N., & Monavari, S. M. (2017). Forest fire risk assessment-an integrated approach based on multicriteria evaluation. Environmental Monitoring and Assessment, 189, 612. es_ES
dc.description.references Ismail, M., Abdel Ghaffar, M., & Azzam, M. (2012). GIS application to identify the potential for certain irrigated agriculture uses on some soils in Western Desert, Egypt. The Egyptian Journal of Remote Sensing and Space Sciences, 15, 39–51. es_ES
dc.description.references Janke, J. R. (2010). Multicriteria GIS modeling of wind and solar farms in Colorado. Renewable Energy, 35(10), 2228–2234. es_ES
dc.description.references Jo, J., & Otanicar, T. (2011). A hierarchical methodology for the mesoscale assessment of building integrated roof solar energy systems. Renewable Energy, 36(11), 2992–3000. es_ES
dc.description.references Khodaparast, M., Rajabi, A., & Edalat, A. (2018). Municipal solid waste landfill siting by using GIS and analytical hierarchy process (AHP): a case study in Qom city, Iran. Environmental Earth Sciences, 77, 52. es_ES
dc.description.references Law 10/2004 of December 9th, of the Valencian Community on protected undeveloped land. Official Valencian Community Bulletin (DOGV) No. 4900, enacted by the Valencian Community Government, Valencia, 2004 [in Spanish]. es_ES
dc.description.references Law 42/2007 of December 13th, on natural heritage and biodiversity. Official State Bulletin (BOE) No. 299, enacted by the Spanish Ministry of Agriculture, Food and Environment, Madrid, 2007 [in Spanish]. es_ES
dc.description.references Maleki, A., Pourfayaz, F., Hafeznia, H., & Rosen, M. A. (2017). A novel framework for optimal photovoltaic size and location in remote areas using a hybrid method: a case study of eastern Iran. Energy Conversion and Management, 153, 129–143. es_ES
dc.description.references Mendas, A., & Delali, A. (2012). Integration of MultiCriteria Decision Analysis in GIS to develop land suitability for agriculture: application to durum wheat cultivation in the region of Mleta in Algeria. Computers and Electronics in Agriculture, 83, 1117–1126. es_ES
dc.description.references Nemet, G. F. (2006). Beyond the learning curve: factors influencing cost reductions in photovoltaics. Energy Policy, 34(17), 3218–3232. es_ES
dc.description.references Ocaña-Ocaña, C., & Galacho-Jiménez, F. B. (2002). Un modelo de aplicación de SIG y evaluación multicriterio al análisis de la capacidad del territorio en relación a funciones turísticas. In: Proceedings of the 4th National Congress on Tourism and Information and Communication Technologies (Turitec), Malaga, 2002. es_ES
dc.description.references Red Eléctrica de España. (2018). Red Eléctrica de España (REE) corporate group website. Retrieved from https://www.ree.es/es/estadisticas-del-sistema-electrico/3015/all Accessed 15 June 2018. es_ES
dc.description.references Reisi, M., Afzali, A., & Aye, L. (2018). Applications of analytical hierarchy process (AHP) and analytical network process (ANP) for industrial site selections in Isfahan, Iran. Environmental Earth Sciences, 77, 537. es_ES
dc.description.references Sánchez-Lozano, J., García-Cascales, M., & Lamata, M. (2016). Comparative TOPSIS-ELECTRE TRI methods for optimal sites for photovoltaic solar farms. Case study in Spain. Journal of Cleaner Production, 127, 387–398. es_ES
dc.description.references Simao, A., Densham, P. J., & Haklay, M. (2009). Web-based GIS for collaborative planning and public participation: an application to the strategic planning of wind farm sites. Journal of Environmental Management, 90, 2027–2040. es_ES
dc.description.references Skoplaki, E., Boudouvis, A., & Palyvos, J. (2008). A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Solar Energy Materials & Solar Cells, 92, 1393–1402. es_ES
dc.description.references Song, D., Jiao, H., & Te Fan, C. (2015). Overview of the photovoltaic technology status and perspective in China. Renewable and Sustainable Energy Reviews, 48, 848–856. es_ES
dc.description.references Trappey, A. J., et al. (2016). The determinants of photovoltaic system costs: an evaluation using a hierarchical learning curve model. Journal of Cleaner Production, 112(2), 1709–1716. es_ES
dc.description.references Wang, S., et al. (2016). Selecting photovoltaic generation sites in Tibet using remote sensing and geographic analysis. Solar Energy, 133, 85–93. es_ES
dc.description.references Xin-gang, Z., Guan, W., & Yahui, Y. (2015). The turning point of solar photovoltaic industry in China: will it come? Renewable and Sustainable Energy Reviews, 41, 178–188. es_ES
dc.description.references Yu, C., van Sark, W., & Alsema, E. (2011). Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects. Renewable and Sustainable Energy Reviews, 15(1), 324–337. es_ES
dc.description.references Yushchenko, A., et al. (2018). GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa. Renewable and Sustainable Energy Reviews, 81(2), 2088–2103. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem