- -

The Gabor wave front set in spaces of ultradifferentiable functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Gabor wave front set in spaces of ultradifferentiable functions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boiti, Chiara es_ES
dc.contributor.author Jornet Casanova, David es_ES
dc.contributor.author Oliaro, Alessandro es_ES
dc.date.accessioned 2020-12-03T04:31:58Z
dc.date.available 2020-12-03T04:31:58Z
dc.date.issued 2019-02 es_ES
dc.identifier.issn 0026-9255 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156326
dc.description.abstract [EN] We consider the spaces of ultradifferentiable functions S as introduced by Bjorck (and its dual S) and we use time-frequency analysis to define a suitable wave front set in this setting and obtain several applications: global regularity properties of pseudodifferential operators of infinite order and the micro-pseudolocal behaviour of partial differential operators with polynomial coefficients and of localization operators with symbols of exponential growth. Moreover, we prove that the new wave front set, defined in terms of the Gabor transform, can be described using only Gabor frames. Finally, some examples show the convenience of the use of weight functions to describe more precisely the global regularity of (ultra)distributions. es_ES
dc.description.sponsorship The authors were partially supported by the INdAM-Gnampa Project 2016 "Nuove prospettive nell'analisi microlocale e tempo-frequenza", by FAR2013, FAR2014 (University of Ferrara) and by the project "Ricerca Locale - Analisi di Gabor, operatori pseudodifferenziali ed equazioni differenziali" (University of Torino). The research of the second author was partially supported by the project MTM2016-76647-P. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Monatshefte für Mathematik es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Gabor wave front set es_ES
dc.subject Weighted Schwartz classes es_ES
dc.subject Short-time Fourier transform es_ES
dc.subject Gabor frames es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title The Gabor wave front set in spaces of ultradifferentiable functions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00605-018-1242-3 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNIFE//FAR2013/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNIFE//FAR2014/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Boiti, C.; Jornet Casanova, D.; Oliaro, A. (2019). The Gabor wave front set in spaces of ultradifferentiable functions. Monatshefte für Mathematik. 188(2):199-246. https://doi.org/10.1007/s00605-018-1242-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00605-018-1242-3 es_ES
dc.description.upvformatpinicio 199 es_ES
dc.description.upvformatpfin 246 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 188 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\406923 es_ES
dc.contributor.funder Università degli Studi di Torino es_ES
dc.contributor.funder Università degli Studi di Ferrara es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Albanese, A., Jornet, D., Oliaro, A.: Quasianalytic wave front sets for solutions of linear partial differential operators. Integr. Equ. Oper. Theory 66, 153–181 (2010) es_ES
dc.description.references Albanese, A., Jornet, D., Oliaro, A.: Wave front sets for ultradistribution solutions of linear partial differential operators with coefficients in non-quasianalytic classes. Math. Nachr. 285(4), 411–425 (2012) es_ES
dc.description.references Björck, G.: Linear partial differential operators and generalized distributions. Ark. Mat. 6(21), 351–407 (1966) es_ES
dc.description.references Boiti, C., Gallucci, E.: The overdetermined Cauchy problem for $$\omega $$ ω -ultradifferentiable functions. Manuscripta Math. 155(3-4), 419–448 (2018) es_ES
dc.description.references Boiti, C., Jornet, D.: A simple proof of Kotake–Narasimhan theorem in some classes of ultradifferentiable functions. J. Pseudo-Differ. Oper. Appl. 8(2), 297–317 (2017) es_ES
dc.description.references Boiti, C., Jornet, D.: A characterization of the wave front set defined by the iterates of an operator with constant coefficients. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM 111(3), 891–919 (2017) es_ES
dc.description.references Boiti, C., Jornet, D., Juan-Huguet, J.: Wave front sets with respect to the iterates of an operator with constant coefficients. Abstr. Appl. Anal. 2014, 1–17 (2014). https://doi.org/10.1155/2014/438716 es_ES
dc.description.references Boiti, C., Jornet, D., Oliaro, A.: Regularity of partial differential operators in ultradifferentiable spaces and Wigner type transforms. J. Math. Anal. Appl. 446, 920–944 (2017) es_ES
dc.description.references Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14(3), 425–444 (2007) es_ES
dc.description.references Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization. Theory and Examples, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2006) es_ES
dc.description.references Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Result. Math. 17, 206–237 (1990) es_ES
dc.description.references Cappiello, M., Schulz, R.: Microlocal analysis of quasianalytic Gelfand–Shilov type ultradistributions. Complex Var. Elliptic Equ. 61(4), 538–561 (2016) es_ES
dc.description.references Carypis, E., Wahlberg, P.: Propagation of exponential phase space singularities for Schrödinger equations with quadratic Hamiltonians. J. Fourier Anal. Appl. 23(3), 530–571 (2017) es_ES
dc.description.references Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Springer, Berlin (2016) es_ES
dc.description.references Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators on non-quasianalytic classes of Beurling type. Studia Math. 167(2), 99–131 (2005) es_ES
dc.description.references Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators of Beurling type and the wave front set. J. Math. Anal. Appl. 340(2), 1153–1170 (2008) es_ES
dc.description.references Fieker, C.: $$P$$ P -Konvexität und $$\omega $$ ω -Hypoelliptizität für partielle Differentialoperatoren mit konstanten Koeffizienten. Diplomarbeit, Mathematischen Institut der Heinrich-Heine-Universität Düsseldorf (1993) es_ES
dc.description.references Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001) es_ES
dc.description.references Gröchenig, K., Zimmermann, G.: Spaces of test functions via the STFT. J. Funct. Spaces Appl. 2(1), 25–53 (2004) es_ES
dc.description.references Heil, C.: A Basis Theory Primer. Applied and Numerical Harmonic Analysis. Springer, New York (2011) es_ES
dc.description.references Hörmander, L.: Fourier integral operators. Acta Math. 127(1), 79–183 (1971) es_ES
dc.description.references Hörmander, L.: Quadratic hyperbolic operators. In: Cattabriga, L., Rodino, L. (eds.) Microlocal Analysis and Applications. Lecture Notes in Mathematics, pp. 118–160. Springer, Berlin (1991) es_ES
dc.description.references Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. I. Springer-Verlag, Berlin (1983) es_ES
dc.description.references Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. II. Springer-Verlag, Berlin (1983) es_ES
dc.description.references Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. III. Springer-Verlag, Berlin (1985) es_ES
dc.description.references Janssen, A.J.E.M.: Duality and biorthogonality for Weyl–Heisenberg frames. J. Fourier Anal. Appl. 1(4), 403–436 (1995) es_ES
dc.description.references Langenbruch, M.: Hermite functions and weighted spaces of generalized functions. Manuscripta Math. 119(3), 269–285 (2006) es_ES
dc.description.references Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford Science Publications, Clarendon Press, Oxford (1997) es_ES
dc.description.references Nakamura, S.: Propagation of the homogeneous wave front set for Schrödinger equations. Duke Math. J. 126, 349–367 (2005) es_ES
dc.description.references Nicola, F., Rodino, L.: Global Pseudo-Differential Calculus on Euclidean Spaces. Springer, Basel (2010) es_ES
dc.description.references Pilipović, S.: Tempered ultradistributions. Boll. U.M.I. B (7) 2(2), 235-251 (1988) es_ES
dc.description.references Prangoski, B.: Pseudodifferential operators of infinite order in spaces of tempered ultradistributions. J. Pseudo-Differ. Oper. Appl. 4(4), 495–549 (2013) es_ES
dc.description.references Pilipović, S., Prangoski, B.: Anti-Wick and Weyl quantization on ultradistribution spaces. J. Math. Pures Appl. 103(2), 472–503 (2015) es_ES
dc.description.references Rodino, L.: Linear Partial Differential Operators and Gevrey Spaces. World Scientific Publishing Co., Inc., River Edge, NJ (1993) es_ES
dc.description.references Rodino, L., Wahlberg, P.: The Gabor wave front set. Monatsh. Math. 173, 625–655 (2014) es_ES
dc.description.references Schulz, R., Wahlberg, P.: Microlocal properties of Shubin pseudodifferential and localization operators. J. Pseudo-Differ. Oper. Appl. 7(1), 91–111 (2016) es_ES
dc.description.references Schulz, R., Wahlberg, P.: Equality of the homogeneous and the Gabor wave front set. Commun. Partial Differ. Equ. 42(5), 703–730 (2017) es_ES
dc.description.references Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer-Verlag, Berlin (1987) es_ES
dc.description.references Sjöstrand, J.: Singularités analytiques microlocales. Astérisque 95, 1–166 (1982) es_ES
dc.description.references Toft, J.: The Bargmann transform on modulation and Gelfand–Shilov spaces, with applications to Toeplitz and pseudo-differential operators. J. Pseudo-Differ. Oper. Appl. 3(2), 145–227 (2012) es_ES
dc.description.references Toft, J.: Images of function and distribution spaces under the Bargmann transform. J. Pseudo-Differ. Oper. Appl. 8(1), 83–139 (2017) es_ES
dc.description.references Treves, F.: Topological vector spaces, distributions and kernels. Academic Press, New York (1967) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem