Mostrar el registro sencillo del ítem
dc.contributor.author | Boiti, Chiara | es_ES |
dc.contributor.author | Jornet Casanova, David | es_ES |
dc.contributor.author | Oliaro, Alessandro | es_ES |
dc.date.accessioned | 2020-12-03T04:31:58Z | |
dc.date.available | 2020-12-03T04:31:58Z | |
dc.date.issued | 2019-02 | es_ES |
dc.identifier.issn | 0026-9255 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156326 | |
dc.description.abstract | [EN] We consider the spaces of ultradifferentiable functions S as introduced by Bjorck (and its dual S) and we use time-frequency analysis to define a suitable wave front set in this setting and obtain several applications: global regularity properties of pseudodifferential operators of infinite order and the micro-pseudolocal behaviour of partial differential operators with polynomial coefficients and of localization operators with symbols of exponential growth. Moreover, we prove that the new wave front set, defined in terms of the Gabor transform, can be described using only Gabor frames. Finally, some examples show the convenience of the use of weight functions to describe more precisely the global regularity of (ultra)distributions. | es_ES |
dc.description.sponsorship | The authors were partially supported by the INdAM-Gnampa Project 2016 "Nuove prospettive nell'analisi microlocale e tempo-frequenza", by FAR2013, FAR2014 (University of Ferrara) and by the project "Ricerca Locale - Analisi di Gabor, operatori pseudodifferenziali ed equazioni differenziali" (University of Torino). The research of the second author was partially supported by the project MTM2016-76647-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Monatshefte für Mathematik | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Gabor wave front set | es_ES |
dc.subject | Weighted Schwartz classes | es_ES |
dc.subject | Short-time Fourier transform | es_ES |
dc.subject | Gabor frames | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | The Gabor wave front set in spaces of ultradifferentiable functions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00605-018-1242-3 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNIFE//FAR2013/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNIFE//FAR2014/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Boiti, C.; Jornet Casanova, D.; Oliaro, A. (2019). The Gabor wave front set in spaces of ultradifferentiable functions. Monatshefte für Mathematik. 188(2):199-246. https://doi.org/10.1007/s00605-018-1242-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00605-018-1242-3 | es_ES |
dc.description.upvformatpinicio | 199 | es_ES |
dc.description.upvformatpfin | 246 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 188 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\406923 | es_ES |
dc.contributor.funder | Università degli Studi di Torino | es_ES |
dc.contributor.funder | Università degli Studi di Ferrara | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Albanese, A., Jornet, D., Oliaro, A.: Quasianalytic wave front sets for solutions of linear partial differential operators. Integr. Equ. Oper. Theory 66, 153–181 (2010) | es_ES |
dc.description.references | Albanese, A., Jornet, D., Oliaro, A.: Wave front sets for ultradistribution solutions of linear partial differential operators with coefficients in non-quasianalytic classes. Math. Nachr. 285(4), 411–425 (2012) | es_ES |
dc.description.references | Björck, G.: Linear partial differential operators and generalized distributions. Ark. Mat. 6(21), 351–407 (1966) | es_ES |
dc.description.references | Boiti, C., Gallucci, E.: The overdetermined Cauchy problem for $$\omega $$ ω -ultradifferentiable functions. Manuscripta Math. 155(3-4), 419–448 (2018) | es_ES |
dc.description.references | Boiti, C., Jornet, D.: A simple proof of Kotake–Narasimhan theorem in some classes of ultradifferentiable functions. J. Pseudo-Differ. Oper. Appl. 8(2), 297–317 (2017) | es_ES |
dc.description.references | Boiti, C., Jornet, D.: A characterization of the wave front set defined by the iterates of an operator with constant coefficients. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM 111(3), 891–919 (2017) | es_ES |
dc.description.references | Boiti, C., Jornet, D., Juan-Huguet, J.: Wave front sets with respect to the iterates of an operator with constant coefficients. Abstr. Appl. Anal. 2014, 1–17 (2014). https://doi.org/10.1155/2014/438716 | es_ES |
dc.description.references | Boiti, C., Jornet, D., Oliaro, A.: Regularity of partial differential operators in ultradifferentiable spaces and Wigner type transforms. J. Math. Anal. Appl. 446, 920–944 (2017) | es_ES |
dc.description.references | Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14(3), 425–444 (2007) | es_ES |
dc.description.references | Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization. Theory and Examples, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2006) | es_ES |
dc.description.references | Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Result. Math. 17, 206–237 (1990) | es_ES |
dc.description.references | Cappiello, M., Schulz, R.: Microlocal analysis of quasianalytic Gelfand–Shilov type ultradistributions. Complex Var. Elliptic Equ. 61(4), 538–561 (2016) | es_ES |
dc.description.references | Carypis, E., Wahlberg, P.: Propagation of exponential phase space singularities for Schrödinger equations with quadratic Hamiltonians. J. Fourier Anal. Appl. 23(3), 530–571 (2017) | es_ES |
dc.description.references | Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Springer, Berlin (2016) | es_ES |
dc.description.references | Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators on non-quasianalytic classes of Beurling type. Studia Math. 167(2), 99–131 (2005) | es_ES |
dc.description.references | Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators of Beurling type and the wave front set. J. Math. Anal. Appl. 340(2), 1153–1170 (2008) | es_ES |
dc.description.references | Fieker, C.: $$P$$ P -Konvexität und $$\omega $$ ω -Hypoelliptizität für partielle Differentialoperatoren mit konstanten Koeffizienten. Diplomarbeit, Mathematischen Institut der Heinrich-Heine-Universität Düsseldorf (1993) | es_ES |
dc.description.references | Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001) | es_ES |
dc.description.references | Gröchenig, K., Zimmermann, G.: Spaces of test functions via the STFT. J. Funct. Spaces Appl. 2(1), 25–53 (2004) | es_ES |
dc.description.references | Heil, C.: A Basis Theory Primer. Applied and Numerical Harmonic Analysis. Springer, New York (2011) | es_ES |
dc.description.references | Hörmander, L.: Fourier integral operators. Acta Math. 127(1), 79–183 (1971) | es_ES |
dc.description.references | Hörmander, L.: Quadratic hyperbolic operators. In: Cattabriga, L., Rodino, L. (eds.) Microlocal Analysis and Applications. Lecture Notes in Mathematics, pp. 118–160. Springer, Berlin (1991) | es_ES |
dc.description.references | Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. I. Springer-Verlag, Berlin (1983) | es_ES |
dc.description.references | Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. II. Springer-Verlag, Berlin (1983) | es_ES |
dc.description.references | Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. III. Springer-Verlag, Berlin (1985) | es_ES |
dc.description.references | Janssen, A.J.E.M.: Duality and biorthogonality for Weyl–Heisenberg frames. J. Fourier Anal. Appl. 1(4), 403–436 (1995) | es_ES |
dc.description.references | Langenbruch, M.: Hermite functions and weighted spaces of generalized functions. Manuscripta Math. 119(3), 269–285 (2006) | es_ES |
dc.description.references | Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford Science Publications, Clarendon Press, Oxford (1997) | es_ES |
dc.description.references | Nakamura, S.: Propagation of the homogeneous wave front set for Schrödinger equations. Duke Math. J. 126, 349–367 (2005) | es_ES |
dc.description.references | Nicola, F., Rodino, L.: Global Pseudo-Differential Calculus on Euclidean Spaces. Springer, Basel (2010) | es_ES |
dc.description.references | Pilipović, S.: Tempered ultradistributions. Boll. U.M.I. B (7) 2(2), 235-251 (1988) | es_ES |
dc.description.references | Prangoski, B.: Pseudodifferential operators of infinite order in spaces of tempered ultradistributions. J. Pseudo-Differ. Oper. Appl. 4(4), 495–549 (2013) | es_ES |
dc.description.references | Pilipović, S., Prangoski, B.: Anti-Wick and Weyl quantization on ultradistribution spaces. J. Math. Pures Appl. 103(2), 472–503 (2015) | es_ES |
dc.description.references | Rodino, L.: Linear Partial Differential Operators and Gevrey Spaces. World Scientific Publishing Co., Inc., River Edge, NJ (1993) | es_ES |
dc.description.references | Rodino, L., Wahlberg, P.: The Gabor wave front set. Monatsh. Math. 173, 625–655 (2014) | es_ES |
dc.description.references | Schulz, R., Wahlberg, P.: Microlocal properties of Shubin pseudodifferential and localization operators. J. Pseudo-Differ. Oper. Appl. 7(1), 91–111 (2016) | es_ES |
dc.description.references | Schulz, R., Wahlberg, P.: Equality of the homogeneous and the Gabor wave front set. Commun. Partial Differ. Equ. 42(5), 703–730 (2017) | es_ES |
dc.description.references | Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer-Verlag, Berlin (1987) | es_ES |
dc.description.references | Sjöstrand, J.: Singularités analytiques microlocales. Astérisque 95, 1–166 (1982) | es_ES |
dc.description.references | Toft, J.: The Bargmann transform on modulation and Gelfand–Shilov spaces, with applications to Toeplitz and pseudo-differential operators. J. Pseudo-Differ. Oper. Appl. 3(2), 145–227 (2012) | es_ES |
dc.description.references | Toft, J.: Images of function and distribution spaces under the Bargmann transform. J. Pseudo-Differ. Oper. Appl. 8(1), 83–139 (2017) | es_ES |
dc.description.references | Treves, F.: Topological vector spaces, distributions and kernels. Academic Press, New York (1967) | es_ES |