Food and Agriculture Organization of the United Nations; http://faostat.fao.org/site/339/default.aspx.
Tieman, D., Bliss, P., McIntyre, L. M., Blandon-Ubeda, A., Bies, D., Odabasi, A. Z., … Klee, H. J. (2012). The Chemical Interactions Underlying Tomato Flavor Preferences. Current Biology, 22(11), 1035-1039. doi:10.1016/j.cub.2012.04.016
R. G. Buttery, R. Teranishi, R. A. Flath, L. C. Ling, Fresh tomato volatiles: Composition and sensory studies. Am. Chem. Soc. Symp. 388, 213–222 (1987).
[+]
Food and Agriculture Organization of the United Nations; http://faostat.fao.org/site/339/default.aspx.
Tieman, D., Bliss, P., McIntyre, L. M., Blandon-Ubeda, A., Bies, D., Odabasi, A. Z., … Klee, H. J. (2012). The Chemical Interactions Underlying Tomato Flavor Preferences. Current Biology, 22(11), 1035-1039. doi:10.1016/j.cub.2012.04.016
R. G. Buttery, R. Teranishi, R. A. Flath, L. C. Ling, Fresh tomato volatiles: Composition and sensory studies. Am. Chem. Soc. Symp. 388, 213–222 (1987).
Baldwin, E. A., Scott, J. W., Shewmaker, C. K., & Schuch, W. (2000). Flavor Trivia and Tomato Aroma: Biochemistry and Possible Mechanisms for Control of Important Aroma Components. HortScience, 35(6), 1013-1022. doi:10.21273/hortsci.35.6.1013
Vogel, J. T., Tieman, D. M., Sims, C. A., Odabasi, A. Z., Clark, D. G., & Klee, H. J. (2010). Carotenoid content impacts flavor acceptability in tomato (Solanum lycopersicum). Journal of the Science of Food and Agriculture, 90(13), 2233-2240. doi:10.1002/jsfa.4076
Zhang, B., Tieman, D. M., Jiao, C., Xu, Y., Chen, K., Fei, Z., … Klee, H. J. (2016). Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. Proceedings of the National Academy of Sciences, 113(44), 12580-12585. doi:10.1073/pnas.1613910113
Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., … Huang, S. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46(11), 1220-1226. doi:10.1038/ng.3117
Fridman, E. (2004). Zooming In on a Quantitative Trait for Tomato Yield Using Interspecific Introgressions. Science, 305(5691), 1786-1789. doi:10.1126/science.1101666
Zanor, M. I., Osorio, S., Nunes-Nesi, A., Carrari, F., Lohse, M., Usadel, B., … Fernie, A. R. (2009). RNA Interference of LIN5 in Tomato Confirms Its Role in Controlling Brix Content, Uncovers the Influence of Sugars on the Levels of Fruit Hormones, and Demonstrates the Importance of Sucrose Cleavage for Normal Fruit Development and Fertility. Plant Physiology, 150(3), 1204-1218. doi:10.1104/pp.109.136598
Tieman, D., Zeigler, M., Schmelz, E., Taylor, M. G., Rushing, S., Jones, J. B., & Klee, H. J. (2010). Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. The Plant Journal, 62(1), 113-123. doi:10.1111/j.1365-313x.2010.04128.x
Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086
Zierler, B., Siegmund, B., & Pfannhauser, W. (2004). Determination of off-flavour compounds in apple juice caused by microorganisms using headspace solid phase microextraction–gas chromatography–mass spectrometry. Analytica Chimica Acta, 520(1-2), 3-11. doi:10.1016/j.aca.2004.03.084
Deikman, J., Kline, R., & Fischer, R. L. (1992). Organization of Ripening and Ethylene Regulatory Regions in a Fruit-Specific Promoter from Tomato (Lycopersicon esculentum). Plant Physiology, 100(4), 2013-2017. doi:10.1104/pp.100.4.2013
Penarrubia, L., Aguilar, M., Margossian, L., & Fischer, R. L. (1992). An Antisense Gene Stimulates Ethylene Hormone Production during Tomato Fruit Ripening. The Plant Cell, 681-687. doi:10.1105/tpc.4.6.681
Lewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Meir, A., Zamir, D., & Tadmor, Y. (2005). Carotenoid Pigmentation Affects the Volatile Composition of Tomato and Watermelon Fruits, As Revealed by Comparative Genetic Analyses. Journal of Agricultural and Food Chemistry, 53(8), 3142-3148. doi:10.1021/jf047927t
Oltman, A. E., Jervis, S. M., & Drake, M. A. (2014). Consumer Attitudes and Preferences for Fresh Market Tomatoes. Journal of Food Science, 79(10), S2091-S2097. doi:10.1111/1750-3841.12638
Tieman, D. M., Zeigler, M., Schmelz, E. A., Taylor, M. G., Bliss, P., Kirst, M., & Klee, H. J. (2006). Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental Botany, 57(4), 887-896. doi:10.1093/jxb/erj074
Rambla, J. L., Alfaro, C., Medina, A., Zarzo, M., Primo, J., & Granell, A. (2015). Tomato fruit volatile profiles are highly dependent on sample processing and capturing methods. Metabolomics, 11(6), 1708-1720. doi:10.1007/s11306-015-0824-5
Bartoshuk, L. ., Duffy, V. ., Fast, K., Green, B. ., Prutkin, J., & Snyder, D. . (2003). Labeled scales (e.g., category, Likert, VAS) and invalid across-group comparisons: what we have learned from genetic variation in taste. Food Quality and Preference, 14(2), 125-138. doi:10.1016/s0950-3293(02)00077-0
A. B. Gilmour, B. Gogel, B. Cullis, R. Thompson R ASReml User Guide Release 3.0. VSN International. Hemel Hempstead, UK (2009).
Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., & Wang, J. (2009). SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25(15), 1966-1967. doi:10.1093/bioinformatics/btp336
(2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635-641. doi:10.1038/nature11119
Li, Y., Chen, W., Liu, E. Y., & Zhou, Y.-H. (2012). Single Nucleotide Polymorphism (SNP) Detection and Genotype Calling from Massively Parallel Sequencing (MPS) Data. Statistics in Biosciences, 5(1), 3-25. doi:10.1007/s12561-012-9067-4
Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11(1), 94. doi:10.1186/1471-2156-11-94
Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. (2012). A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics, 28(24), 3326-3328. doi:10.1093/bioinformatics/bts606
Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403-1405. doi:10.1093/bioinformatics/btn129
Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S., Freimer, N. B., … Eskin, E. (2010). Variance component model to account for sample structure in genome-wide association studies. Nature Genetics, 42(4), 348-354. doi:10.1038/ng.548
Li, M.-X., Yeung, J. M. Y., Cherny, S. S., & Sham, P. C. (2011). Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Human Genetics, 131(5), 747-756. doi:10.1007/s00439-011-1118-2
Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2004). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263-265. doi:10.1093/bioinformatics/bth457
Craig, D. W., Pearson, J. V., Szelinger, S., Sekar, A., Redman, M., Corneveaux, J. J., … Huentelman, M. J. (2008). Identification of genetic variants using bar-coded multiplexed sequencing. Nature Methods, 5(10), 887-893. doi:10.1038/nmeth.1251
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. doi:10.1093/bioinformatics/btp324
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352
[-]