- -

A hybrid method for accurate iris segmentation on at-a-distance visible-wavelength images

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A hybrid method for accurate iris segmentation on at-a-distance visible-wavelength images

Show simple item record

Files in this item

dc.contributor.author Fuentes-Hurtado, Félix José es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.contributor.author Diego-Mas, Jose Antonio es_ES
dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.date.accessioned 2020-12-04T04:32:44Z
dc.date.available 2020-12-04T04:32:44Z
dc.date.issued 2019-08-15 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156431
dc.description.abstract [EN] This work describes a new hybrid method for accurate iris segmentation from full-face images independently of the ethnicity of the subject. It is based on a combination of three methods: facial key-point detection, integro-differential operator (IDO) and mathematical morphology. First, facial landmarks are extracted by means of the Chehra algorithm in order to obtain the eye location. Then, the IDO is applied to the extracted sub-image containing only the eye in order to locate the iris. Once the iris is located, a series of mathematical morphological operations is performed in order to accurately segment it. Results are obtained and compared among four different ethnicities (Asian, Black, Latino and White) as well as with two other iris segmentation algorithms. In addition, robustness against rotation, blurring and noise is also assessed. Our method obtains state-of-the-art performance and shows itself robust with small amounts of blur, noise and/or rotation. Furthermore, it is fast, accurate, and its code is publicly available. es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof EURASIP Journal on Image and Video Processing (Online) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Iris segmentation es_ES
dc.subject Mathematical morphology es_ES
dc.subject Facial landmark detection es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification PROYECTOS DE INGENIERIA es_ES
dc.title A hybrid method for accurate iris segmentation on at-a-distance visible-wavelength images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s13640-019-0473-0 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Fuentes-Hurtado, FJ.; Naranjo Ornedo, V.; Diego-Mas, JA.; Alcañiz Raya, ML. (2019). A hybrid method for accurate iris segmentation on at-a-distance visible-wavelength images. EURASIP Journal on Image and Video Processing (Online). 2019(1):1-14. https://doi.org/10.1186/s13640-019-0473-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s13640-019-0473-0 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2019 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1687-5281 es_ES
dc.relation.pasarela S\392551 es_ES
dc.description.references A. Radman, K. Jumari, N. Zainal, Fast and reliable iris segmentation algorithm. IET Image Process.7(1), 42–49 (2013). es_ES
dc.description.references M. Erbilek, M. Fairhurst, M. C. D. C Abreu, in 5th International Conference on Imaging for Crime Detection and Prevention (ICDP 2013). Age prediction from iris biometrics (London, 2013), pp. 1–5. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6913712&isnumber=6867223 . es_ES
dc.description.references A. Abbasi, M. Khan, Iris-pupil thickness based method for determining age group of a person. Int. Arab J. Inf. Technol. (IAJIT). 13(6) (2016). es_ES
dc.description.references G. Mabuza-Hocquet, F. Nelwamondo, T. Marwala, in Intelligent Information and Database Systems. ed. by N. Nguyen, S. Tojo, L. Nguyen, B. Trawiński. Ethnicity Distinctiveness Through Iris Texture Features Using Gabor Filters. ACIIDS 2017. Lecture Notes in Computer Science, vol. 10192 (Springer, Cham, 2017). es_ES
dc.description.references S. Lagree, K. W. Bowyer, in 2011 IEEE International Conference on Technologies for Homeland Security (HST). Predicting ethnicity and gender from iris texture (IEEEWaltham, 2011). p. 440–445. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6107909&isnumber=6107829 . es_ES
dc.description.references J. G. Daugman, High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell.15(11), 1148–1161 (1993). es_ES
dc.description.references N. Kourkoumelis, M. Tzaphlidou. Medical Safety Issues Concerning the Use of Incoherent Infrared Light in Biometrics, eds. A. Kumar, D. Zhang. Ethics and Policy of Biometrics. ICEB 2010. Lecture Notes in Computer Science, vol 6005 (Springer, Berlin, Heidelberg, 2010). es_ES
dc.description.references R. P. Wildes, Iris recognition: an emerging biometric technology. Proc. IEEE. 85(9), 1348–1363 (1997). es_ES
dc.description.references M. Kass, A. Witkin, D. Terzopoulos, Snakes: Active contour models. Int. J. Comput. Vision. 1(4), 321–331 (1988). es_ES
dc.description.references S. J. Pundlik, D. L. Woodard, S. T. Birchfield, in 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Non-ideal iris segmentation using graph cuts (IEEEAnchorage, 2008). p. 1–6. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4563108&isnumber=4562948 . es_ES
dc.description.references H. Proença, Iris recognition: On the segmentation of degraded images acquired in the visible wavelength. IEEE Trans. Pattern Anal. Mach. Intell.32(8), 1502–1516 (2010). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5156505&isnumber=5487331 . es_ES
dc.description.references T. Tan, Z. He, Z. Sun, Efficient and robust segmentation of noisy iris images for non-cooperative iris recognition. Image Vision Comput.28(2), 223–230 (2010). es_ES
dc.description.references C. -W. Tan, A. Kumar, in CVPR 2011 WORKSHOPS. Automated segmentation of iris images using visible wavelength face images (Colorado Springs, 2011). p. 9–14. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5981682&isnumber=5981671 . es_ES
dc.description.references Y. -H. Li, M. Savvides, An automatic iris occlusion estimation method based on high-dimensional density estimation. IEEE Trans. Pattern Anal. Mach. Intell.35(4), 784–796 (2013). es_ES
dc.description.references M. Yahiaoui, E. Monfrini, B. Dorizzi, Markov chains for unsupervised segmentation of degraded nir iris images for person recognition. Pattern Recogn. Lett.82:, 116–123 (2016). es_ES
dc.description.references A. Radman, N. Zainal, S. A. Suandi, Automated segmentation of iris images acquired in an unconstrained environment using hog-svm and growcut. Digit. Signal Proc.64:, 60–70 (2017). es_ES
dc.description.references N. Liu, H. Li, M. Zhang, J. Liu, Z. Sun, T. Tan, in 2016 International Conference on Biometrics (ICB). Accurate iris segmentation in non-cooperative environments using fully convolutional networks (Halmstad, 2016). p. 1–8. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7550055&isnumber=7550036 . es_ES
dc.description.references Z. Zhao, A. Kumar, in 2017 IEEE International Conference on Computer Vision (ICCV). Towards more accurate iris recognition using deeply learned spatially corresponding features (Venice, 2017). p. 3829–3838. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237673&isnumber=8237262 . es_ES
dc.description.references P. Li, X. Liu, L. Xiao, Q. Song, Robust and accurate iris segmentation in very noisy iris images. Image Vision Comput.28(2), 246–253 (2010). es_ES
dc.description.references D. S. Jeong, J. W. Hwang, B. J. Kang, K. R. Park, C. S. Won, D. -K. Park, J. Kim, A new iris segmentation method for non-ideal iris images. Image Vision Comput.28(2), 254–260 (2010). es_ES
dc.description.references Y. Chen, M. Adjouadi, C. Han, J. Wang, A. Barreto, N. Rishe, J. Andrian, A highly accurate and computationally efficient approach for unconstrained iris segmentation. Image Vision Comput. 28(2), 261–269 (2010). es_ES
dc.description.references Z. Zhao, A. Kumar, in 2015 IEEE International Conference on Computer Vision (ICCV). An accurate iris segmentation framework under relaxed imaging constraints using total variation model (Santiago, 2015). p. 3828–3836. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410793&isnumber=7410356 . es_ES
dc.description.references Y. Hu, K. Sirlantzis, G. Howells, Improving colour iris segmentation using a model selection technique. Pattern Recogn. Lett.57:, 24–32 (2015). es_ES
dc.description.references E. Ouabida, A. Essadique, A. Bouzid, Vander lugt correlator based active contours for iris segmentation and tracking. Expert Systems Appl.71:, 383–395 (2017). es_ES
dc.description.references C. -W. Tan, A. Kumar, Unified framework for automated iris segmentation using distantly acquired face images. IEEE Trans. Image Proc.21(9), 4068–4079 (2012). es_ES
dc.description.references C. -W. Tan, A. Kumar, in Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012). Human identification from at-a-distance images by simultaneously exploiting iris and periocular features (Tsukuba, 2012). p. 553–556. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460194&isnumber=6460043 . es_ES
dc.description.references C. -W. Tan, A. Kumar, Towards online iris and periocular recognition under relaxed imaging constraints. IEEE Trans. Image Proc.22(10), 3751–3765 (2013). es_ES
dc.description.references K. Y. Shin, Y. G. Kim, K. R. Park, Enhanced iris recognition method based on multi-unit iris images. Opt. Eng.52(4), 047201–047201 (2013). es_ES
dc.description.references CASIA iris databases. http://biometrics.idealtest.org/ . Accessed 06 Sept 2017. es_ES
dc.description.references WVU iris databases. hhttp://biic.wvu.edu/data-sets/synthetic-iris-dataset . Accessed 06 Sept 2017. es_ES
dc.description.references UBIRIS iris database. http://iris.di.ubi.pt . Accessed 06 Sept 2017. es_ES
dc.description.references MICHE iris database. http://biplab.unisa.it/MICHE/ . Accessed 06 Sept 2017. es_ES
dc.description.references P. J. Phillips, et al, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 1. Overview of the face recognition grand challenge (San Diego, 2005). p. 947–954. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1467368&isnumber=31472 . es_ES
dc.description.references D. S. Ma, J. Correll, B. Wittenbrink, The chicago face database: A free stimulus set of faces and norming data. Behav. Res. Methods. 47(4), 1122–1135 (2015). es_ES
dc.description.references P. Soille, Morphological Image Analysis: Principles and Applications (Springer, 2013). es_ES
dc.description.references A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Inc., Englewood Cliffs, 1989). es_ES
dc.description.references J. Daugman, How iris recognition works. IEEE Trans. Circ. Syst. Video Technol.14(1), 21–30 (2004). es_ES
dc.description.references A. Asthana, S. Zafeiriou, S. Cheng, M. Pantic, in 2014 IEEE Conference on Computer Vision and Pattern Recognition. Incremental face alignment in the wild (Columbus, 2014). p. 1859–1866. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909636&isnumber=6909393 . es_ES
dc.description.references T. Baltrusaitis, P. Robinson, L. -P. Morency, in 2013 IEEE International Conference on Computer Vision Workshops. Constrained local neural fields for robust facial landmark detection in the wild (Sydney, 2013). p. 354–361. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6755919&isnumber=6755862 . es_ES
dc.description.references X. Zhu, D. Ramanan, in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference On. Face detection, pose estimation, and landmark localization in the wild (IEEEBerlin Heidelberg, 2012), pp. 2879–2886. es_ES
dc.description.references G. Tzimiropoulos, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Project-out cascaded regression with an application to face alignment (Boston, 2015). p. 3659–3667. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298989&isnumber=7298593 . es_ES
dc.description.references H. Hofbauer, F. Alonso-Fernandez, P. Wild, J. Bigun, A. Uhl, in 2014 22nd International Conference on Pattern Recognition. A ground truth for iris segmentation (Stockholm, 2014). p. 527–532. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6976811&isnumber=6976709 . es_ES
dc.description.references H. Proença, L. A. Alexandre, in 2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems. The NICE.I: Noisy Iris Challenge Evaluation - Part I (Crystal City, 2007). p. 1–4. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4401910&isnumber=4401902 . es_ES
dc.description.references J. Daugman, in European Convention on Security and Detection. High confidence recognition of persons by rapid video analysis of iris texture, (1995). p. 244–251. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=491729&isnumber=10615 . es_ES
dc.description.references Code of Matlab implementation of Daugman’s integro-differential operator (IDO). https://es.mathworks.com/matlabcentral/fileexchange/15652-iris-segmentation-using-daugman-s-integrodifferential-operator/ . Accessed 06 Sept 2017. es_ES
dc.description.references Code of Matlab implementation of Zhao and Kumar’s iris segmentation framework under relaxed imaging constraints using total variation model. http://www4.comp.polyu.edu.hk/~csajaykr/tvmiris.htm/ . Accessed 06 Sept 2017. es_ES
dc.description.references Code of Matlab implementation of presented work. https://gitlab.com/ffuentes/hybrid_iris_segmentation/ . Accessed 06 Sept 2017. es_ES
dc.description.references Face and eye detection with OpenCV. https://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html . Accessed 07 Sept 2018. es_ES
dc.description.references A. K. Boyat, B. K. Joshi, 6. A review paper:noise models in digital image processing signal & image processing. An International Journal (SIPIJ), (2015), pp. 63–75. https://doi.org/10.5121/sipij.2015.6206 . es_ES
dc.description.references A. Buades, Y. Lou, J. M. Morel, Z. Tang, Multi image noise estimation and denoising (2010). Available: https://hal.archives-ouvertes.fr/hal-00510866/ . es_ES


This item appears in the following Collection(s)

Show simple item record