Mostrar el registro sencillo del ítem
dc.contributor.author | Fuentes-Hurtado, Félix José | es_ES |
dc.contributor.author | Naranjo Ornedo, Valeriana | es_ES |
dc.contributor.author | Diego-Mas, Jose Antonio | es_ES |
dc.contributor.author | Alcañiz Raya, Mariano Luis | es_ES |
dc.date.accessioned | 2020-12-04T04:32:44Z | |
dc.date.available | 2020-12-04T04:32:44Z | |
dc.date.issued | 2019-08-15 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156431 | |
dc.description.abstract | [EN] This work describes a new hybrid method for accurate iris segmentation from full-face images independently of the ethnicity of the subject. It is based on a combination of three methods: facial key-point detection, integro-differential operator (IDO) and mathematical morphology. First, facial landmarks are extracted by means of the Chehra algorithm in order to obtain the eye location. Then, the IDO is applied to the extracted sub-image containing only the eye in order to locate the iris. Once the iris is located, a series of mathematical morphological operations is performed in order to accurately segment it. Results are obtained and compared among four different ethnicities (Asian, Black, Latino and White) as well as with two other iris segmentation algorithms. In addition, robustness against rotation, blurring and noise is also assessed. Our method obtains state-of-the-art performance and shows itself robust with small amounts of blur, noise and/or rotation. Furthermore, it is fast, accurate, and its code is publicly available. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer (Biomed Central Ltd.) | es_ES |
dc.relation.ispartof | EURASIP Journal on Image and Video Processing (Online) | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Iris segmentation | es_ES |
dc.subject | Mathematical morphology | es_ES |
dc.subject | Facial landmark detection | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | PROYECTOS DE INGENIERIA | es_ES |
dc.title | A hybrid method for accurate iris segmentation on at-a-distance visible-wavelength images | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s13640-019-0473-0 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica | es_ES |
dc.description.bibliographicCitation | Fuentes-Hurtado, FJ.; Naranjo Ornedo, V.; Diego-Mas, JA.; Alcañiz Raya, ML. (2019). A hybrid method for accurate iris segmentation on at-a-distance visible-wavelength images. EURASIP Journal on Image and Video Processing (Online). 2019(1):1-14. https://doi.org/10.1186/s13640-019-0473-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s13640-019-0473-0 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2019 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1687-5281 | es_ES |
dc.relation.pasarela | S\392551 | es_ES |
dc.description.references | A. Radman, K. Jumari, N. Zainal, Fast and reliable iris segmentation algorithm. IET Image Process.7(1), 42–49 (2013). | es_ES |
dc.description.references | M. Erbilek, M. Fairhurst, M. C. D. C Abreu, in 5th International Conference on Imaging for Crime Detection and Prevention (ICDP 2013). Age prediction from iris biometrics (London, 2013), pp. 1–5. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6913712&isnumber=6867223 . | es_ES |
dc.description.references | A. Abbasi, M. Khan, Iris-pupil thickness based method for determining age group of a person. Int. Arab J. Inf. Technol. (IAJIT). 13(6) (2016). | es_ES |
dc.description.references | G. Mabuza-Hocquet, F. Nelwamondo, T. Marwala, in Intelligent Information and Database Systems. ed. by N. Nguyen, S. Tojo, L. Nguyen, B. Trawiński. Ethnicity Distinctiveness Through Iris Texture Features Using Gabor Filters. ACIIDS 2017. Lecture Notes in Computer Science, vol. 10192 (Springer, Cham, 2017). | es_ES |
dc.description.references | S. Lagree, K. W. Bowyer, in 2011 IEEE International Conference on Technologies for Homeland Security (HST). Predicting ethnicity and gender from iris texture (IEEEWaltham, 2011). p. 440–445. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6107909&isnumber=6107829 . | es_ES |
dc.description.references | J. G. Daugman, High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell.15(11), 1148–1161 (1993). | es_ES |
dc.description.references | N. Kourkoumelis, M. Tzaphlidou. Medical Safety Issues Concerning the Use of Incoherent Infrared Light in Biometrics, eds. A. Kumar, D. Zhang. Ethics and Policy of Biometrics. ICEB 2010. Lecture Notes in Computer Science, vol 6005 (Springer, Berlin, Heidelberg, 2010). | es_ES |
dc.description.references | R. P. Wildes, Iris recognition: an emerging biometric technology. Proc. IEEE. 85(9), 1348–1363 (1997). | es_ES |
dc.description.references | M. Kass, A. Witkin, D. Terzopoulos, Snakes: Active contour models. Int. J. Comput. Vision. 1(4), 321–331 (1988). | es_ES |
dc.description.references | S. J. Pundlik, D. L. Woodard, S. T. Birchfield, in 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Non-ideal iris segmentation using graph cuts (IEEEAnchorage, 2008). p. 1–6. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4563108&isnumber=4562948 . | es_ES |
dc.description.references | H. Proença, Iris recognition: On the segmentation of degraded images acquired in the visible wavelength. IEEE Trans. Pattern Anal. Mach. Intell.32(8), 1502–1516 (2010). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5156505&isnumber=5487331 . | es_ES |
dc.description.references | T. Tan, Z. He, Z. Sun, Efficient and robust segmentation of noisy iris images for non-cooperative iris recognition. Image Vision Comput.28(2), 223–230 (2010). | es_ES |
dc.description.references | C. -W. Tan, A. Kumar, in CVPR 2011 WORKSHOPS. Automated segmentation of iris images using visible wavelength face images (Colorado Springs, 2011). p. 9–14. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5981682&isnumber=5981671 . | es_ES |
dc.description.references | Y. -H. Li, M. Savvides, An automatic iris occlusion estimation method based on high-dimensional density estimation. IEEE Trans. Pattern Anal. Mach. Intell.35(4), 784–796 (2013). | es_ES |
dc.description.references | M. Yahiaoui, E. Monfrini, B. Dorizzi, Markov chains for unsupervised segmentation of degraded nir iris images for person recognition. Pattern Recogn. Lett.82:, 116–123 (2016). | es_ES |
dc.description.references | A. Radman, N. Zainal, S. A. Suandi, Automated segmentation of iris images acquired in an unconstrained environment using hog-svm and growcut. Digit. Signal Proc.64:, 60–70 (2017). | es_ES |
dc.description.references | N. Liu, H. Li, M. Zhang, J. Liu, Z. Sun, T. Tan, in 2016 International Conference on Biometrics (ICB). Accurate iris segmentation in non-cooperative environments using fully convolutional networks (Halmstad, 2016). p. 1–8. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7550055&isnumber=7550036 . | es_ES |
dc.description.references | Z. Zhao, A. Kumar, in 2017 IEEE International Conference on Computer Vision (ICCV). Towards more accurate iris recognition using deeply learned spatially corresponding features (Venice, 2017). p. 3829–3838. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237673&isnumber=8237262 . | es_ES |
dc.description.references | P. Li, X. Liu, L. Xiao, Q. Song, Robust and accurate iris segmentation in very noisy iris images. Image Vision Comput.28(2), 246–253 (2010). | es_ES |
dc.description.references | D. S. Jeong, J. W. Hwang, B. J. Kang, K. R. Park, C. S. Won, D. -K. Park, J. Kim, A new iris segmentation method for non-ideal iris images. Image Vision Comput.28(2), 254–260 (2010). | es_ES |
dc.description.references | Y. Chen, M. Adjouadi, C. Han, J. Wang, A. Barreto, N. Rishe, J. Andrian, A highly accurate and computationally efficient approach for unconstrained iris segmentation. Image Vision Comput. 28(2), 261–269 (2010). | es_ES |
dc.description.references | Z. Zhao, A. Kumar, in 2015 IEEE International Conference on Computer Vision (ICCV). An accurate iris segmentation framework under relaxed imaging constraints using total variation model (Santiago, 2015). p. 3828–3836. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410793&isnumber=7410356 . | es_ES |
dc.description.references | Y. Hu, K. Sirlantzis, G. Howells, Improving colour iris segmentation using a model selection technique. Pattern Recogn. Lett.57:, 24–32 (2015). | es_ES |
dc.description.references | E. Ouabida, A. Essadique, A. Bouzid, Vander lugt correlator based active contours for iris segmentation and tracking. Expert Systems Appl.71:, 383–395 (2017). | es_ES |
dc.description.references | C. -W. Tan, A. Kumar, Unified framework for automated iris segmentation using distantly acquired face images. IEEE Trans. Image Proc.21(9), 4068–4079 (2012). | es_ES |
dc.description.references | C. -W. Tan, A. Kumar, in Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012). Human identification from at-a-distance images by simultaneously exploiting iris and periocular features (Tsukuba, 2012). p. 553–556. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460194&isnumber=6460043 . | es_ES |
dc.description.references | C. -W. Tan, A. Kumar, Towards online iris and periocular recognition under relaxed imaging constraints. IEEE Trans. Image Proc.22(10), 3751–3765 (2013). | es_ES |
dc.description.references | K. Y. Shin, Y. G. Kim, K. R. Park, Enhanced iris recognition method based on multi-unit iris images. Opt. Eng.52(4), 047201–047201 (2013). | es_ES |
dc.description.references | CASIA iris databases. http://biometrics.idealtest.org/ . Accessed 06 Sept 2017. | es_ES |
dc.description.references | WVU iris databases. hhttp://biic.wvu.edu/data-sets/synthetic-iris-dataset . Accessed 06 Sept 2017. | es_ES |
dc.description.references | UBIRIS iris database. http://iris.di.ubi.pt . Accessed 06 Sept 2017. | es_ES |
dc.description.references | MICHE iris database. http://biplab.unisa.it/MICHE/ . Accessed 06 Sept 2017. | es_ES |
dc.description.references | P. J. Phillips, et al, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 1. Overview of the face recognition grand challenge (San Diego, 2005). p. 947–954. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1467368&isnumber=31472 . | es_ES |
dc.description.references | D. S. Ma, J. Correll, B. Wittenbrink, The chicago face database: A free stimulus set of faces and norming data. Behav. Res. Methods. 47(4), 1122–1135 (2015). | es_ES |
dc.description.references | P. Soille, Morphological Image Analysis: Principles and Applications (Springer, 2013). | es_ES |
dc.description.references | A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Inc., Englewood Cliffs, 1989). | es_ES |
dc.description.references | J. Daugman, How iris recognition works. IEEE Trans. Circ. Syst. Video Technol.14(1), 21–30 (2004). | es_ES |
dc.description.references | A. Asthana, S. Zafeiriou, S. Cheng, M. Pantic, in 2014 IEEE Conference on Computer Vision and Pattern Recognition. Incremental face alignment in the wild (Columbus, 2014). p. 1859–1866. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909636&isnumber=6909393 . | es_ES |
dc.description.references | T. Baltrusaitis, P. Robinson, L. -P. Morency, in 2013 IEEE International Conference on Computer Vision Workshops. Constrained local neural fields for robust facial landmark detection in the wild (Sydney, 2013). p. 354–361. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6755919&isnumber=6755862 . | es_ES |
dc.description.references | X. Zhu, D. Ramanan, in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference On. Face detection, pose estimation, and landmark localization in the wild (IEEEBerlin Heidelberg, 2012), pp. 2879–2886. | es_ES |
dc.description.references | G. Tzimiropoulos, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Project-out cascaded regression with an application to face alignment (Boston, 2015). p. 3659–3667. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298989&isnumber=7298593 . | es_ES |
dc.description.references | H. Hofbauer, F. Alonso-Fernandez, P. Wild, J. Bigun, A. Uhl, in 2014 22nd International Conference on Pattern Recognition. A ground truth for iris segmentation (Stockholm, 2014). p. 527–532. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6976811&isnumber=6976709 . | es_ES |
dc.description.references | H. Proença, L. A. Alexandre, in 2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems. The NICE.I: Noisy Iris Challenge Evaluation - Part I (Crystal City, 2007). p. 1–4. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4401910&isnumber=4401902 . | es_ES |
dc.description.references | J. Daugman, in European Convention on Security and Detection. High confidence recognition of persons by rapid video analysis of iris texture, (1995). p. 244–251. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=491729&isnumber=10615 . | es_ES |
dc.description.references | Code of Matlab implementation of Daugman’s integro-differential operator (IDO). https://es.mathworks.com/matlabcentral/fileexchange/15652-iris-segmentation-using-daugman-s-integrodifferential-operator/ . Accessed 06 Sept 2017. | es_ES |
dc.description.references | Code of Matlab implementation of Zhao and Kumar’s iris segmentation framework under relaxed imaging constraints using total variation model. http://www4.comp.polyu.edu.hk/~csajaykr/tvmiris.htm/ . Accessed 06 Sept 2017. | es_ES |
dc.description.references | Code of Matlab implementation of presented work. https://gitlab.com/ffuentes/hybrid_iris_segmentation/ . Accessed 06 Sept 2017. | es_ES |
dc.description.references | Face and eye detection with OpenCV. https://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html . Accessed 07 Sept 2018. | es_ES |
dc.description.references | A. K. Boyat, B. K. Joshi, 6. A review paper:noise models in digital image processing signal & image processing. An International Journal (SIPIJ), (2015), pp. 63–75. https://doi.org/10.5121/sipij.2015.6206 . | es_ES |
dc.description.references | A. Buades, Y. Lou, J. M. Morel, Z. Tang, Multi image noise estimation and denoising (2010). Available: https://hal.archives-ouvertes.fr/hal-00510866/ . | es_ES |