Mostrar el registro sencillo del ítem
dc.contributor.author | Uribe-Wandurraga, Zaida Natalia | es_ES |
dc.contributor.author | Igual Ramo, Marta | es_ES |
dc.contributor.author | García-Segovia, Purificación | es_ES |
dc.contributor.author | Martínez Monzó, Javier | es_ES |
dc.date.accessioned | 2020-12-05T04:32:21Z | |
dc.date.available | 2020-12-05T04:32:21Z | |
dc.date.issued | 2019-08-01 | es_ES |
dc.identifier.issn | 2042-650X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156502 | |
dc.description.abstract | [EN] Microalgae has recently attracted considerable attention due to its potential as a high source of proteins, lipids, vitamins, minerals and phytochemicals. Hence, it can be a useful ingredient intended to increase the nutritional and technological value of food products. The aim of the present study was to evaluate the effect of the addition of microalgae biomass (Chlorella vulgaris and Arthrospira platensis) on mineral content, colour and mechanical properties of breadsticks, and the colour, texture and rheology of doughs. Microalgae were shown to affect texture and rheology in doughs showing greater hardness values, although, a decrease in hardness, toughness, crispiness and brittleness parameters was seen in breadsticks. The main effects observed with microalgae addition were changes in dough colour, with visual colour perception, in all cases, of distinguished green colour tones. Breadstick colour was evaluated over 15 days of storage and showed colour stability. Furthermore, the mineral content of breadsticks increased, specifically, iron and selenium, both important compounds involved in human body functions. The incorporation of Chlorella or Spirulina in the formulation allows for the production of breadsticks classed as "high in iron and selenium food" and more stable in colour and texture. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Food & Function | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Mineral content | es_ES |
dc.subject | Spirulina platensis | es_ES |
dc.subject | Chlorella vulgaris | es_ES |
dc.subject | Breadstick | es_ES |
dc.subject | Colour | es_ES |
dc.subject | Rheology | es_ES |
dc.subject | Mechanical properties | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Effect of microalgae addition on mineral content, colour and mechanical properties of breadsticks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c9fo00286c | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Uribe-Wandurraga, ZN.; Igual Ramo, M.; García-Segovia, P.; Martínez Monzó, J. (2019). Effect of microalgae addition on mineral content, colour and mechanical properties of breadsticks. Food & Function. 10(8):4685-4692. https://doi.org/10.1039/c9fo00286c | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c9fo00286c | es_ES |
dc.description.upvformatpinicio | 4685 | es_ES |
dc.description.upvformatpfin | 4692 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.pmid | 31294732 | es_ES |
dc.relation.pasarela | S\391397 | es_ES |
dc.description.references | Volk, R.-B. (2008). A newly developed assay for the quantitative determination of antimicrobial (anticyanobacterial) activity of both hydrophilic and lipophilic test compounds without any restriction. Microbiological Research, 163(2), 161-167. doi:10.1016/j.micres.2006.03.015 | es_ES |
dc.description.references | Ibañez, E., & Cifuentes, A. (2013). Benefits of using algae as natural sources of functional ingredients. Journal of the Science of Food and Agriculture, 93(4), 703-709. doi:10.1002/jsfa.6023 | es_ES |
dc.description.references | Borowitzka, M. A. (2013). High-value products from microalgae—their development and commercialisation. Journal of Applied Phycology, 25(3), 743-756. doi:10.1007/s10811-013-9983-9 | es_ES |
dc.description.references | J. A. C. Costa and M. G.Morais , in Fermentation Process Engineering in the Food Industry , ed. C. R. Soccoll , A. Pandey and C. Larroche , CRC press, Taylor & Francis Group , Boca Raton, FL , 2013 , ch. 16, pp. 405–428 | es_ES |
dc.description.references | Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina – From growth to nutritional product: A review. Trends in Food Science & Technology, 69, 157-171. doi:10.1016/j.tifs.2017.09.010 | es_ES |
dc.description.references | Batista, A. P., Gouveia, L., Bandarra, N. M., Franco, J. M., & Raymundo, A. (2013). Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Research, 2(2), 164-173. doi:10.1016/j.algal.2013.01.004 | es_ES |
dc.description.references | Batista, A. P., Nunes, M. C., Fradinho, P., Gouveia, L., Sousa, I., Raymundo, A., & Franco, J. M. (2012). Novel foods with microalgal ingredients – Effect of gel setting conditions on the linear viscoelasticity of Spirulina and Haematococcus gels. Journal of Food Engineering, 110(2), 182-189. doi:10.1016/j.jfoodeng.2011.05.044 | es_ES |
dc.description.references | Chacón-Lee, T. L., & González-Mariño, G. E. (2010). Microalgae for «Healthy» Foods-Possibilities and Challenges. Comprehensive Reviews in Food Science and Food Safety, 9(6), 655-675. doi:10.1111/j.1541-4337.2010.00132.x | es_ES |
dc.description.references | Kadam, S. U., & Prabhasankar, P. (2010). Marine foods as functional ingredients in bakery and pasta products. Food Research International, 43(8), 1975-1980. doi:10.1016/j.foodres.2010.06.007 | es_ES |
dc.description.references | Roohinejad, S., Koubaa, M., Barba, F. J., Saljoughian, S., Amid, M., & Greiner, R. (2017). Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Research International, 99, 1066-1083. doi:10.1016/j.foodres.2016.08.016 | es_ES |
dc.description.references | Potter, R., Stojceska, V., & Plunkett, A. (2013). The use of fruit powders in extruded snacks suitable for Children’s diets. LWT - Food Science and Technology, 51(2), 537-544. doi:10.1016/j.lwt.2012.11.015 | es_ES |
dc.description.references | Shahbazizadeh, S., Khosravi-Darani, K., & Sohrabvandi, S. (2015). Fortification of Iranian Traditional Cookies with Spirulina platensis. Annual Research & Review in Biology, 7(3), 144-154. doi:10.9734/arrb/2015/13492 | es_ES |
dc.description.references | W. Horwitz and G. W.Latimer , Official methods of analysis of AOAC International , 2005 | es_ES |
dc.description.references | Fernández-Ruiz, V., Olives, A. I., Cámara, M., Sánchez-Mata, M. de C., & Torija, M. E. (2010). Mineral and Trace Elements Content in 30 Accessions of Tomato Fruits (Solanum lycopersicum L.,) and Wild Relatives (Solanum pimpinellifolium L., Solanum cheesmaniae L. Riley, and Solanum habrochaites S. Knapp & D.M. Spooner). Biological Trace Element Research, 141(1-3), 329-339. doi:10.1007/s12011-010-8738-6 | es_ES |
dc.description.references | Devi, A., & Khatkar, B. S. (2016). Physicochemical, rheological and functional properties of fats and oils in relation to cookie quality: a review. Journal of Food Science and Technology, 53(10), 3633-3641. doi:10.1007/s13197-016-2355-0 | es_ES |
dc.description.references | Inglett, G. E., Chen, D., & Liu, S. X. (2015). Physical properties of gluten-free sugar cookies made from amaranth–oat composites. LWT - Food Science and Technology, 63(1), 214-220. doi:10.1016/j.lwt.2015.03.056 | es_ES |
dc.description.references | Buono, S., Langellotti, A. L., Martello, A., Rinna, F., & Fogliano, V. (2014). Functional ingredients from microalgae. Food Funct., 5(8), 1669-1685. doi:10.1039/c4fo00125g | es_ES |
dc.description.references | Mancebo, C. M., Rodriguez, P., & Gómez, M. (2016). Assessing rice flour-starch-protein mixtures to produce gluten free sugar-snap cookies. LWT - Food Science and Technology, 67, 127-132. doi:10.1016/j.lwt.2015.11.045 | es_ES |
dc.description.references | Graça, C., Fradinho, P., Sousa, I., & Raymundo, A. (2018). Impact of Chlorella vulgaris on the rheology of wheat flour dough and bread texture. LWT, 89, 466-474. doi:10.1016/j.lwt.2017.11.024 | es_ES |
dc.description.references | Bodart, M., de Peñaranda, R., Deneyer, A., & Flamant, G. (2008). Photometry and colorimetry characterisation of materials in daylighting evaluation tools. Building and Environment, 43(12), 2046-2058. doi:10.1016/j.buildenv.2007.12.006 | es_ES |
dc.description.references | Gouveia, L., Batista, A. P., Miranda, A., Empis, J., & Raymundo, A. (2007). Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innovative Food Science & Emerging Technologies, 8(3), 433-436. doi:10.1016/j.ifset.2007.03.026 | es_ES |
dc.description.references | Batista, A. P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., … Raymundo, A. (2017). Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research, 26, 161-171. doi:10.1016/j.algal.2017.07.017 | es_ES |
dc.description.references | García-Segovia, P., Pagán-Moreno, M. J., Lara, I. F., & Martínez-Monzó, J. (2017). Effect of microalgae incorporation on physicochemical and textural properties in wheat bread formulation. Food Science and Technology International, 23(5), 437-447. doi:10.1177/1082013217700259 | es_ES |
dc.description.references | M. C. Latham , in Nutrición humana en el mundo en desarrollo , FAO , New York, USA , 2002 , ch. 10 | es_ES |
dc.description.references | World Health Organization , Iron Deficiency Anemia: Assessment, Prevention, and Control , WHO/UNICEF/UNU , Geneva, Switzerland , 2001 | es_ES |
dc.description.references | Rayman, M. P. (2000). The importance of selenium to human health. The Lancet, 356(9225), 233-241. doi:10.1016/s0140-6736(00)02490-9 | es_ES |