- -

Value Analysis Model to Support the Building Design Process

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Value Analysis Model to Support the Building Design Process

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Giménez, Zulay es_ES
dc.contributor.author Mourgues, Claudio es_ES
dc.contributor.author Alarcón, Luis F. es_ES
dc.contributor.author Mesa, Harrison es_ES
dc.contributor.author Pellicer, Eugenio es_ES
dc.date.accessioned 2020-12-05T04:33:05Z
dc.date.available 2020-12-05T04:33:05Z
dc.date.issued 2020-05-21 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156520
dc.description.abstract [EN] The architecture, engineering, and construction industry requires methods that link the capture of customer requirements with the continuous measurement of the value generated and the identification of value losses in the design process. A value analysis model (VAM) is proposed to measure the value creation expected by customers and to identify value losses through indexes. As points of reference, the model takes the Kano model and target costing, which is used in the building project design process. The VAM was developed under the design science research methodology, which focuses on solving practical problems by producing outputs by iteration. The resulting VAM allowed the measurement and analysis of value through desired, potential, and generated value indexes, value loss identification, and percentages of value fulfillment concerning the design stage. The VAM permits the comparison of different projects, visualization of the evolution of value generation, and identification of value losses to be eradicated. The VAM encourages constant feedback and has potential to deliver higher value, as it enables the determination of parameters that add value for different stakeholders and informs designers where to direct resources and efforts to enhance vital variables and not trivial variables es_ES
dc.description.sponsorship This research was funded by CONICYT grant number PCHA/National Doctorate/2016-21160571 for the postgraduate studies of Zulay Giménez and by FONDECYT (1181648). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Value generation es_ES
dc.subject Value loss es_ES
dc.subject Desired value es_ES
dc.subject Potential value es_ES
dc.subject Value indexes es_ES
dc.subject Design science research es_ES
dc.subject.classification PROYECTOS DE INGENIERIA es_ES
dc.title Value Analysis Model to Support the Building Design Process es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su12104224 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//1181648/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONICYT//2016-21160571/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Giménez, Z.; Mourgues, C.; Alarcón, LF.; Mesa, H.; Pellicer, E. (2020). Value Analysis Model to Support the Building Design Process. Sustainability. 12(10):1-24. https://doi.org/10.3390/su12104224 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su12104224 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\413213 es_ES
dc.contributor.funder Fondo Nacional de Desarrollo Científico y Tecnológico, Chile es_ES
dc.contributor.funder Comisión Nacional de Investigación Científica y Tecnológica, Chile es_ES
dc.description.references Gunby, M., Damnjanovic, I., Anderson, S., Joyce, J., & Nuccio, J. (2013). Identifying, Communicating, and Responding to Project Value Interests. Journal of Management in Engineering, 29(1), 50-59. doi:10.1061/(asce)me.1943-5479.0000116 es_ES
dc.description.references Chaos Report. Project Smart UK. United Kingdomhttps://www.projectsmart.co.uk/white-papers/chaos-report.pdf es_ES
dc.description.references Díaz, H., Alarcón, L. F., Mourgues, C., & García, S. (2017). Multidisciplinary Design Optimization through process integration in the AEC industry: Strategies and challenges. Automation in Construction, 73, 102-119. doi:10.1016/j.autcon.2016.09.007 es_ES
dc.description.references Bustos Chocomeli, Ó. H. (s. f.). Factores latentes de la desviación de presupuestos en proyectos de arquitectura. Un análisis empírico. doi:10.4995/thesis/10251/48558 es_ES
dc.description.references Knotten, V., Svalestuen, F., Hansen, G. K., & Lædre, O. (2015). Design Management in the Building Process - A Review of Current Literature. Procedia Economics and Finance, 21, 120-127. doi:10.1016/s2212-5671(15)00158-6 es_ES
dc.description.references Kamara, J. M., Anumba, C. J., & Evbuomwan, N. F. O. (2000). Process model for client requirements processing in construction. Business Process Management Journal, 6(3), 251-279. doi:10.1108/14637150010325462 es_ES
dc.description.references Kumar, V., & Whitney, P. (2007). Daily life, not markets: customer-centered design. Journal of Business Strategy, 28(4), 46-58. doi:10.1108/02756660710760944 es_ES
dc.description.references Love, P. E. D., Lopez, R., & Edwards, D. J. (2013). Reviewing the past to learn in the future: making sense of design errors and failures in construction. Structure and Infrastructure Engineering, 9(7), 675-688. doi:10.1080/15732479.2011.605369 es_ES
dc.description.references Holmström, J., Ketokivi, M., & Hameri, A.-P. (2009). Bridging Practice and Theory: A Design Science Approach. Decision Sciences, 40(1), 65-87. doi:10.1111/j.1540-5915.2008.00221.x es_ES
dc.description.references Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A Design Science Research Methodology for Information Systems Research. Journal of Management Information Systems, 24(3), 45-77. doi:10.2753/mis0742-1222240302 es_ES
dc.description.references Huang, J. (2017). Application of Kano Model in Requirements Analysis of Y Company’s Consulting Project. American Journal of Industrial and Business Management, 07(07), 910-918. doi:10.4236/ajibm.2017.77064 es_ES
dc.description.references Rachwan, R., Abotaleb, I., & Elgazouli, M. (2016). The Influence of Value Engineering and Sustainability Considerations on the Project Value. Procedia Environmental Sciences, 34, 431-438. doi:10.1016/j.proenv.2016.04.038 es_ES
dc.description.references Eskerod, P., & Ang, K. (2017). Stakeholder Value Constructs in Megaprojects: A Long-Term Assessment Case Study. Project Management Journal, 48(6), 60-75. doi:10.1177/875697281704800606 es_ES
dc.description.references Bolar, A. A., Tesfamariam, S., & Sadiq, R. (2017). Framework for prioritizing infrastructure user expectations using Quality Function Deployment (QFD). International Journal of Sustainable Built Environment, 6(1), 16-29. doi:10.1016/j.ijsbe.2017.02.002 es_ES
dc.description.references Gallarza, M. G., Arteaga-Moreno, F., Servera-Francés, D., & Fayos-Gardó, T. (2016). Participar como voluntario en eventos especiales: comparación entre el valor esperado y percibido. Innovar, 26(59), 47-60. doi:10.15446/innovar.v26n59.54322 es_ES
dc.description.references Kowaltowski, D. C. C. K., & Granja, A. D. (2011). The concept of desired value as a stimulus for change in social housing in Brazil. Habitat International, 35(3), 435-446. doi:10.1016/j.habitatint.2010.12.002 es_ES
dc.description.references Tucker, J. R., Pearce, A. R., Bruce, R. D., McCoy, A. P., & Mills, T. H. (2012). The perceived value of green professional credentials to credential holders in the US building design and construction community. Construction Management and Economics, 30(11), 963-979. doi:10.1080/01446193.2012.728710 es_ES
dc.description.references Lee, B. D., & Paredis, C. J. J. (2014). A Conceptual Framework for Value-driven Design and Systems Engineering. Procedia CIRP, 21, 10-17. doi:10.1016/j.procir.2014.06.147 es_ES
dc.description.references Kamara, J. M., Anumba, C. J., & Evbuomwan, N. F. O. (2000). Establishing and processing client requirements-a key aspect of concurrent engineering in construction. Engineering Construction and Architectural Management, 7(1), 15-28. doi:10.1046/j.1365-232x.2000.00129.x es_ES
dc.description.references Drevland, F., & Tillmann, P. A. (2018). Value for Whom? 26th Annual Conference of the International Group for Lean Construction. doi:10.24928/2018/0533 es_ES
dc.description.references Rybkowski, Z. K., Shepley, M. M., & Ballard, H. G. (2012). Target Value Design: Applications to Newborn Intensive Care Units. HERD: Health Environments Research & Design Journal, 5(4), 5-22. doi:10.1177/193758671200500402 es_ES
dc.description.references Yin, Y., Qin, S., & Holland, R. (2011). Development of a design performance measurement matrix for improving collaborative design during a design process. International Journal of Productivity and Performance Management, 60(2), 152-184. doi:10.1108/17410401111101485 es_ES
dc.description.references Volkova, T., & Jākobsone, I. (2016). Design thinking as a business tool to ensure continuous value generation. Intellectual Economics, 10(1), 63-69. doi:10.1016/j.intele.2016.06.003 es_ES
dc.description.references Westcott, M., Sato, S., Mrazek, D., Wallace, R., Vanka, S., Bilson, C., & Hardin, D. (2013). The DMI Design Value Scorecard: A New Design Measurement and Management Model. Design Management Review, 24(4), 10-16. doi:10.1111/drev.10257 es_ES
dc.description.references Heikkilä, V. T., Paasivaara, M., Lasssenius, C., Damian, D., & Engblom, C. (2017). Managing the requirements flow from strategy to release in large-scale agile development: a case study at Ericsson. Empirical Software Engineering, 22(6), 2892-2936. doi:10.1007/s10664-016-9491-z es_ES
dc.description.references FARÍAS, P., & FISTROVIC, B. (2016). LAS PREFERENCIAS DEL CONSUMIDOR USANDO EL MÉTODO DE MÁXIMAS DIFERENCIAS. Revista de Administração de Empresas, 56(2), 138-151. doi:10.1590/s0034-759020160202 es_ES
dc.description.references Amini, P., Falk, B., & Schmitt, R. (2016). A Framework for Value-optimized Design of Product Features. Procedia CIRP, 57, 386-391. doi:10.1016/j.procir.2016.11.067 es_ES
dc.description.references Menezes, A. C., Cripps, A., Bouchlaghem, D., & Buswell, R. (2012). Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap. Applied Energy, 97, 355-364. doi:10.1016/j.apenergy.2011.11.075 es_ES
dc.description.references Zimina, D., Ballard, G., & Pasquire, C. (2012). Target value design: using collaboration and a lean approach to reduce construction cost. Construction Management and Economics, 30(5), 383-398. doi:10.1080/01446193.2012.676658 es_ES
dc.description.references Borgianni, Y. (2018). Verifying dynamic Kano’s model to support new product/service development. Journal of Industrial Engineering and Management, 11(3), 569. doi:10.3926/jiem.2591 es_ES
dc.description.references Pandolfo, A., Rojas, J. W., Kurek, J., Pandolfo, L., Lublo, R., Guimaráes, J., & Reinehr, R. (2008). Aplicación del modelo de evaluación de proyectos habitacionales para la medición de la satisfacción de las necesidades del usuario. Revista ingeniería de construcción, 23(1). doi:10.4067/s0718-50732008000100005 es_ES
dc.description.references Haddadi, A., Johansen, A., & Andersen, B. (2016). A Conceptual Framework to Enhance Value Creation in Construction Projects. Procedia Computer Science, 100, 565-573. doi:10.1016/j.procs.2016.09.196 es_ES
dc.description.references Lin, G., & Shen, Q. (2007). Measuring the Performance of Value Management Studies in Construction: Critical Review. Journal of Management in Engineering, 23(1), 2-9. doi:10.1061/(asce)0742-597x(2007)23:1(2) es_ES
dc.description.references Witell, L., Löfgren, M., & Dahlgaard, J. J. (2013). Theory of attractive quality and the Kano methodology – the past, the present, and the future. Total Quality Management & Business Excellence, 24(11-12), 1241-1252. doi:10.1080/14783363.2013.791117 es_ES
dc.description.references Rischmoller, L., Alarcón, L. F., & Koskela, L. (2006). Improving Value Generation in the Design Process of Industrial Projects Using CAVT. Journal of Management in Engineering, 22(2), 52-60. doi:10.1061/(asce)0742-597x(2006)22:2(52) es_ES
dc.description.references Tauriainen, M., Marttinen, P., Dave, B., & Koskela, L. (2016). The Effects of BIM and Lean Construction on Design Management Practices. Procedia Engineering, 164, 567-574. doi:10.1016/j.proeng.2016.11.659 es_ES
dc.description.references Song, J., Migliaccio, G. C., Wang, G., & Lu, H. (2017). Exploring the Influence of System Quality, Information Quality, and External Service on BIM User Satisfaction. Journal of Management in Engineering, 33(6), 04017036. doi:10.1061/(asce)me.1943-5479.0000549 es_ES
dc.description.references Matzler, K., Hinterhuber, H. H., Bailom, F., & Sauerwein, E. (1996). How to delight your customers. Journal of Product & Brand Management, 5(2), 6-18. doi:10.1108/10610429610119469 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem