Mostrar el registro sencillo del ítem
dc.contributor.author | Molina-Gomez, Nidia Isabel | es_ES |
dc.contributor.author | Rodriguez-Rojas, Karen | es_ES |
dc.contributor.author | Calderón-Rivera, Dayam | es_ES |
dc.contributor.author | Díaz Arévalo, Jose Luis | es_ES |
dc.contributor.author | López Jiménez, Petra Amparo | es_ES |
dc.date.accessioned | 2020-12-08T04:32:05Z | |
dc.date.available | 2020-12-08T04:32:05Z | |
dc.date.issued | 2020-04 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156565 | |
dc.description.abstract | [EN] Different studies have been carried out to evaluate the progress made by countries and cities towards achieving sustainability to compare its evolution. However, the micro-territorial level, which encompasses a community perspective, has not been examined through a comprehensive forecasting method of sustainability categories with machine learning tools. This study aims to establish a method to forecast the sustainability levels of an urban ecosystem through supervised modeling. To this end, it was necessary to establish a set of indicators that characterize the dimensions of sustainable development, consistent with the Sustainable Development Goals. Using the data normalization technique to process the information and combining it in different dimensions made it possible to identify the sustainability level of the urban zone for each year from 2009 to 2017. The resulting information was the basis for the supervised classification. It was found that the sustainability level in the micro-territory has been improving from a low level in 2009, which increased to a medium level in the subsequent years. Forecasts of the sustainability levels of the zone were possible by using decision trees, neural networks, and support vector machines, in which 70% of the data were used to train the machine learning tools, with the remaining 30% used for validation. According to the performance metrics, decision trees outperformed the other two tools. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sustainability | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Urban sustainability | es_ES |
dc.subject | Indicators | es_ES |
dc.subject | Supervised classification | es_ES |
dc.subject | Micro-territories | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Using Machine Learning Tools to Classify Sustainability Levels in the Development of Urban Ecosystems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/su12083326 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Molina-Gomez, NI.; Rodriguez-Rojas, K.; Calderón-Rivera, D.; Díaz Arévalo, JL.; López Jiménez, PA. (2020). Using Machine Learning Tools to Classify Sustainability Levels in the Development of Urban Ecosystems. Sustainability. 12(8):1-20. https://doi.org/10.3390/su12083326 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/su12083326 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.eissn | 2071-1050 | es_ES |
dc.relation.pasarela | S\412408 | es_ES |
dc.description.references | Shen, L., Kyllo, J., & Guo, X. (2013). An Integrated Model Based on a Hierarchical Indices System for Monitoring and Evaluating Urban Sustainability. Sustainability, 5(2), 524-559. doi:10.3390/su5020524 | es_ES |
dc.description.references | Verma, P., & Raghubanshi, A. S. (2018). Urban sustainability indicators: Challenges and opportunities. Ecological Indicators, 93, 282-291. doi:10.1016/j.ecolind.2018.05.007 | es_ES |
dc.description.references | Phillis, Y. A., Kouikoglou, V. S., & Verdugo, C. (2017). Urban sustainability assessment and ranking of cities. Computers, Environment and Urban Systems, 64, 254-265. doi:10.1016/j.compenvurbsys.2017.03.002 | es_ES |
dc.description.references | Gerry Marten, Human Ecology: Basic Concepts for Sustainable Development—Populations and Feedback Systemshttp://gerrymarten.com/ecologia-humana/capitulo02.html | es_ES |
dc.description.references | Tanguay, G. A., Rajaonson, J., Lefebvre, J.-F., & Lanoie, P. (2010). Measuring the sustainability of cities: An analysis of the use of local indicators. Ecological Indicators, 10(2), 407-418. doi:10.1016/j.ecolind.2009.07.013 | es_ES |
dc.description.references | Mapar, M., Jafari, M. J., Mansouri, N., Arjmandi, R., Azizinejad, R., & Ramos, T. B. (2017). Sustainability indicators for municipalities of megacities: Integrating health, safety and environmental performance. Ecological Indicators, 83, 271-291. doi:10.1016/j.ecolind.2017.08.012 | es_ES |
dc.description.references | Rajaonson, J., & Tanguay, G. A. (2017). A sensitivity analysis to methodological variation in indicator-based urban sustainability assessment: a Quebec case study. Ecological Indicators, 83, 122-131. doi:10.1016/j.ecolind.2017.07.050 | es_ES |
dc.description.references | Dizdaroglu, D. (2015). Developing micro-level urban ecosystem indicators for sustainability assessment. Environmental Impact Assessment Review, 54, 119-124. doi:10.1016/j.eiar.2015.06.004 | es_ES |
dc.description.references | Niemeijer, D., & de Groot, R. S. (2008). A conceptual framework for selecting environmental indicator sets. Ecological Indicators, 8(1), 14-25. doi:10.1016/j.ecolind.2006.11.012 | es_ES |
dc.description.references | Scipioni, A., Mazzi, A., Mason, M., & Manzardo, A. (2009). The Dashboard of Sustainability to measure the local urban sustainable development: The case study of Padua Municipality. Ecological Indicators, 9(2), 364-380. doi:10.1016/j.ecolind.2008.05.002 | es_ES |
dc.description.references | Hák, T., Janoušková, S., & Moldan, B. (2016). Sustainable Development Goals: A need for relevant indicators. Ecological Indicators, 60, 565-573. doi:10.1016/j.ecolind.2015.08.003 | es_ES |
dc.description.references | Sotelo, J. A., Tolón, A., & Lastra, X. (2011). Indicadores por y para el desarrollo sostenible, un estudio de caso. Estudios Geográficos, 72(271), 611-654. doi:10.3989/estgeogr.201124 | es_ES |
dc.description.references | Feleki, E., Vlachokostas, C., & Moussiopoulos, N. (2018). Characterisation of sustainability in urban areas: An analysis of assessment tools with emphasis on European cities. Sustainable Cities and Society, 43, 563-577. doi:10.1016/j.scs.2018.08.025 | es_ES |
dc.description.references | Ocampo, L., Ebisa, J. A., Ombe, J., & Geen Escoto, M. (2018). Sustainable ecotourism indicators with fuzzy Delphi method – A Philippine perspective. Ecological Indicators, 93, 874-888. doi:10.1016/j.ecolind.2018.05.060 | es_ES |
dc.description.references | Torres-Delgado, A., & López Palomeque, F. (2018). The ISOST index: A tool for studying sustainable tourism. Journal of Destination Marketing & Management, 8, 281-289. doi:10.1016/j.jdmm.2017.05.005 | es_ES |
dc.description.references | Cui, X., Fang, C., Liu, H., & Liu, X. (2019). Assessing sustainability of urbanization by a coordinated development index for an Urbanization-Resources-Environment complex system: A case study of Jing-Jin-Ji region, China. Ecological Indicators, 96, 383-391. doi:10.1016/j.ecolind.2018.09.009 | es_ES |
dc.description.references | Saaty, R. W. (1987). The analytic hierarchy process—what it is and how it is used. Mathematical Modelling, 9(3-5), 161-176. doi:10.1016/0270-0255(87)90473-8 | es_ES |
dc.description.references | Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. doi:10.1007/bf00994018 | es_ES |
dc.description.references | R package version 6.0-72https://CRAN.R-project.org/package=caret | es_ES |
dc.description.references | nnet: Feed-Forward Neural Networks and Multinomial Log-Linear Modelshttps://cran.r-project.org/web/packages/nnet/index.html | es_ES |
dc.description.references | e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wienhttps://cran.r-project.org/web/packages/e1071/index.html | es_ES |
dc.subject.ods | 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles | es_ES |