- -

Using Machine Learning Tools to Classify Sustainability Levels in the Development of Urban Ecosystems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Using Machine Learning Tools to Classify Sustainability Levels in the Development of Urban Ecosystems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Molina-Gomez, Nidia Isabel es_ES
dc.contributor.author Rodriguez-Rojas, Karen es_ES
dc.contributor.author Calderón-Rivera, Dayam es_ES
dc.contributor.author Díaz Arévalo, Jose Luis es_ES
dc.contributor.author López Jiménez, Petra Amparo es_ES
dc.date.accessioned 2020-12-08T04:32:05Z
dc.date.available 2020-12-08T04:32:05Z
dc.date.issued 2020-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156565
dc.description.abstract [EN] Different studies have been carried out to evaluate the progress made by countries and cities towards achieving sustainability to compare its evolution. However, the micro-territorial level, which encompasses a community perspective, has not been examined through a comprehensive forecasting method of sustainability categories with machine learning tools. This study aims to establish a method to forecast the sustainability levels of an urban ecosystem through supervised modeling. To this end, it was necessary to establish a set of indicators that characterize the dimensions of sustainable development, consistent with the Sustainable Development Goals. Using the data normalization technique to process the information and combining it in different dimensions made it possible to identify the sustainability level of the urban zone for each year from 2009 to 2017. The resulting information was the basis for the supervised classification. It was found that the sustainability level in the micro-territory has been improving from a low level in 2009, which increased to a medium level in the subsequent years. Forecasts of the sustainability levels of the zone were possible by using decision trees, neural networks, and support vector machines, in which 70% of the data were used to train the machine learning tools, with the remaining 30% used for validation. According to the performance metrics, decision trees outperformed the other two tools. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Urban sustainability es_ES
dc.subject Indicators es_ES
dc.subject Supervised classification es_ES
dc.subject Micro-territories es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Using Machine Learning Tools to Classify Sustainability Levels in the Development of Urban Ecosystems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su12083326 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Molina-Gomez, NI.; Rodriguez-Rojas, K.; Calderón-Rivera, D.; Díaz Arévalo, JL.; López Jiménez, PA. (2020). Using Machine Learning Tools to Classify Sustainability Levels in the Development of Urban Ecosystems. Sustainability. 12(8):1-20. https://doi.org/10.3390/su12083326 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su12083326 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\412408 es_ES
dc.description.references Shen, L., Kyllo, J., & Guo, X. (2013). An Integrated Model Based on a Hierarchical Indices System for Monitoring and Evaluating Urban Sustainability. Sustainability, 5(2), 524-559. doi:10.3390/su5020524 es_ES
dc.description.references Verma, P., & Raghubanshi, A. S. (2018). Urban sustainability indicators: Challenges and opportunities. Ecological Indicators, 93, 282-291. doi:10.1016/j.ecolind.2018.05.007 es_ES
dc.description.references Phillis, Y. A., Kouikoglou, V. S., & Verdugo, C. (2017). Urban sustainability assessment and ranking of cities. Computers, Environment and Urban Systems, 64, 254-265. doi:10.1016/j.compenvurbsys.2017.03.002 es_ES
dc.description.references Gerry Marten, Human Ecology: Basic Concepts for Sustainable Development—Populations and Feedback Systemshttp://gerrymarten.com/ecologia-humana/capitulo02.html es_ES
dc.description.references Tanguay, G. A., Rajaonson, J., Lefebvre, J.-F., & Lanoie, P. (2010). Measuring the sustainability of cities: An analysis of the use of local indicators. Ecological Indicators, 10(2), 407-418. doi:10.1016/j.ecolind.2009.07.013 es_ES
dc.description.references Mapar, M., Jafari, M. J., Mansouri, N., Arjmandi, R., Azizinejad, R., & Ramos, T. B. (2017). Sustainability indicators for municipalities of megacities: Integrating health, safety and environmental performance. Ecological Indicators, 83, 271-291. doi:10.1016/j.ecolind.2017.08.012 es_ES
dc.description.references Rajaonson, J., & Tanguay, G. A. (2017). A sensitivity analysis to methodological variation in indicator-based urban sustainability assessment: a Quebec case study. Ecological Indicators, 83, 122-131. doi:10.1016/j.ecolind.2017.07.050 es_ES
dc.description.references Dizdaroglu, D. (2015). Developing micro-level urban ecosystem indicators for sustainability assessment. Environmental Impact Assessment Review, 54, 119-124. doi:10.1016/j.eiar.2015.06.004 es_ES
dc.description.references Niemeijer, D., & de Groot, R. S. (2008). A conceptual framework for selecting environmental indicator sets. Ecological Indicators, 8(1), 14-25. doi:10.1016/j.ecolind.2006.11.012 es_ES
dc.description.references Scipioni, A., Mazzi, A., Mason, M., & Manzardo, A. (2009). The Dashboard of Sustainability to measure the local urban sustainable development: The case study of Padua Municipality. Ecological Indicators, 9(2), 364-380. doi:10.1016/j.ecolind.2008.05.002 es_ES
dc.description.references Hák, T., Janoušková, S., & Moldan, B. (2016). Sustainable Development Goals: A need for relevant indicators. Ecological Indicators, 60, 565-573. doi:10.1016/j.ecolind.2015.08.003 es_ES
dc.description.references Sotelo, J. A., Tolón, A., & Lastra, X. (2011). Indicadores por y para el desarrollo sostenible, un estudio de caso. Estudios Geográficos, 72(271), 611-654. doi:10.3989/estgeogr.201124 es_ES
dc.description.references Feleki, E., Vlachokostas, C., & Moussiopoulos, N. (2018). Characterisation of sustainability in urban areas: An analysis of assessment tools with emphasis on European cities. Sustainable Cities and Society, 43, 563-577. doi:10.1016/j.scs.2018.08.025 es_ES
dc.description.references Ocampo, L., Ebisa, J. A., Ombe, J., & Geen Escoto, M. (2018). Sustainable ecotourism indicators with fuzzy Delphi method – A Philippine perspective. Ecological Indicators, 93, 874-888. doi:10.1016/j.ecolind.2018.05.060 es_ES
dc.description.references Torres-Delgado, A., & López Palomeque, F. (2018). The ISOST index: A tool for studying sustainable tourism. Journal of Destination Marketing & Management, 8, 281-289. doi:10.1016/j.jdmm.2017.05.005 es_ES
dc.description.references Cui, X., Fang, C., Liu, H., & Liu, X. (2019). Assessing sustainability of urbanization by a coordinated development index for an Urbanization-Resources-Environment complex system: A case study of Jing-Jin-Ji region, China. Ecological Indicators, 96, 383-391. doi:10.1016/j.ecolind.2018.09.009 es_ES
dc.description.references Saaty, R. W. (1987). The analytic hierarchy process—what it is and how it is used. Mathematical Modelling, 9(3-5), 161-176. doi:10.1016/0270-0255(87)90473-8 es_ES
dc.description.references Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. doi:10.1007/bf00994018 es_ES
dc.description.references R package version 6.0-72https://CRAN.R-project.org/package=caret es_ES
dc.description.references nnet: Feed-Forward Neural Networks and Multinomial Log-Linear Modelshttps://cran.r-project.org/web/packages/nnet/index.html es_ES
dc.description.references e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wienhttps://cran.r-project.org/web/packages/e1071/index.html es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem