Mostrar el registro sencillo del ítem
dc.contributor.author | García-Oliver, José M | es_ES |
dc.contributor.author | García Martínez, Antonio | es_ES |
dc.contributor.author | De La Morena, Joaquín | es_ES |
dc.contributor.author | Monsalve-Serrano, Javier | es_ES |
dc.date.accessioned | 2020-12-11T04:33:29Z | |
dc.date.available | 2020-12-11T04:33:29Z | |
dc.date.issued | 2019-09 | es_ES |
dc.identifier.issn | 1061-3773 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156846 | |
dc.description.abstract | [EN] This study presents the application of an existing interactive application for teaching spray dynamics in engineering degrees. The model is based on spray momentum conservation and can be used to evaluate both fuel-air mixing characteristics in inert conditions as well as diffusion flame performance once combustion takes place. During a dedicated computer-lab session, the students perform parametric studies regarding the influence of the nozzle outlet diameter, the combustion chamber density and the spray cone opening angle on the mixing process, characterized by the maximum stoichiometric length. Later on, the effect of the combustion reaction on the mixing field is evaluated. The results are analyzed taking as a reference to the theoretical development made by Spalding and Schlichting for diffusion gas jets. The outcomes of several years using this technique are reported. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Computer Applications in Engineering Education | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Combustion | es_ES |
dc.subject | Educational tool | es_ES |
dc.subject | Engineering teaching | es_ES |
dc.subject | Practical session | es_ES |
dc.subject | Spray | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Application of a one-dimensional spray model to teach diffusion flame fundamentals for engineering students | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/cae.22146 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | García-Oliver, JM.; García Martínez, A.; De La Morena, J.; Monsalve-Serrano, J. (2019). Application of a one-dimensional spray model to teach diffusion flame fundamentals for engineering students. Computer Applications in Engineering Education. 27(5):1202-1216. https://doi.org/10.1002/cae.22146 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/cae.22146 | es_ES |
dc.description.upvformatpinicio | 1202 | es_ES |
dc.description.upvformatpfin | 1216 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\392394 | es_ES |
dc.description.references | Aleiferis, P. G., Behringer, M. K., & Malcolm, J. S. (2016). Integral Length Scales and Time Scales of Turbulence in an Optical Spark-Ignition Engine. Flow, Turbulence and Combustion, 98(2), 523-577. doi:10.1007/s10494-016-9775-9 | es_ES |
dc.description.references | Battin-Leclerc, F. (2008). Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates. Progress in Energy and Combustion Science, 34(4), 440-498. doi:10.1016/j.pecs.2007.10.002 | es_ES |
dc.description.references | Burke, R. D., De Jonge, N., Avola, C., & Forte, B. (2017). A virtual engine laboratory for teaching powertrain engineering. Computer Applications in Engineering Education, 25(6), 948-960. doi:10.1002/cae.21847 | es_ES |
dc.description.references | Desantes, J. M., Pastor, J. V., García-Oliver, J. M., & Briceño, F. J. (2014). An experimental analysis on the evolution of the transient tip penetration in reacting Diesel sprays. Combustion and Flame, 161(8), 2137-2150. doi:10.1016/j.combustflame.2014.01.022 | es_ES |
dc.description.references | Desantes, J. M., Pastor, J. V., García-Oliver, J. M., & Pastor, J. M. (2009). A 1D model for the description of mixing-controlled reacting diesel sprays. Combustion and Flame, 156(1), 234-249. doi:10.1016/j.combustflame.2008.10.008 | es_ES |
dc.description.references | Dumouchel, C., Cousin, J., & Triballier, K. (2005). On the role of the liquid flow characteristics on low-Weber-number atomization processes. Experiments in Fluids, 38(5), 637-647. doi:10.1007/s00348-005-0944-1 | es_ES |
dc.description.references | Edmonds, E. (1980). Where Next in Computer Aided Learning? British Journal of Educational Technology, 11(2), 97-104. doi:10.1111/j.1467-8535.1980.tb00396.x | es_ES |
dc.description.references | Fansler, T. D., & Parrish, S. E. (2014). Spray measurement technology: a review. Measurement Science and Technology, 26(1), 012002. doi:10.1088/0957-0233/26/1/012002 | es_ES |
dc.description.references | Gutiérrez-Romero, J. E., Zamora-Parra, B., & Esteve-Pérez, J. A. (2016). Acquisition of offshore engineering design skills on naval architecture master courses through potential flow CFD tools. Computer Applications in Engineering Education, 25(1), 48-61. doi:10.1002/cae.21778 | es_ES |
dc.description.references | IPCC. Intergovernmental Panel on Climate Change Working Group I. Climate Change 2013: The Physical Science Basis.Long‐term Climate Change: Projections Commitments and Irreversibility Cambridge University Press New York NY 2013:1029–136.https://doi.org/10.1017/CBO9781107415324.024 | es_ES |
dc.description.references | W. Kirchstetter, T., Harley, R. A., Kreisberg, N. M., Stolzenburg, M. R., & Hering, S. V. (1999). On-road measurement of fine particle and nitrogen oxide emissions from light- and heavy-duty motor vehicles. Atmospheric Environment, 33(18), 2955-2968. doi:10.1016/s1352-2310(99)00089-8 | es_ES |
dc.description.references | K. BenNaceur L.Cozzi andT.Gould.World Energy Outlook 2016.2016.https://doi.org/10.1787/weo‐2016‐en | es_ES |
dc.description.references | M.Nesbitet al. Comparative Study on the differences between the EU and US legislation on emissions in the automotive sector.2016. | es_ES |
dc.description.references | PASTOR, J., JAVIERLOPEZ, J., GARCIA, J., & PASTOR, J. (2008). A 1D model for the description of mixing-controlled inert diesel sprays. Fuel, 87(13-14), 2871-2885. doi:10.1016/j.fuel.2008.04.017 | es_ES |
dc.description.references | PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009 | es_ES |
dc.description.references | Payri, R., Salvador, F. J., Gimeno, J., & Novella, R. (2011). Flow regime effects on non-cavitating injection nozzles over spray behavior. International Journal of Heat and Fluid Flow, 32(1), 273-284. doi:10.1016/j.ijheatfluidflow.2010.10.001 | es_ES |
dc.description.references | Perumal, K., & Ganesan, R. (2015). CFD modeling for the estimation of pressure loss coefficients of pipe fittings: An undergraduate project. Computer Applications in Engineering Education, 24(2), 180-185. doi:10.1002/cae.21695 | es_ES |
dc.description.references | Regueiro, A., Patiño, D., Míguez, C., & Cuevas, M. (2017). A practice for engineering students based on the control and monitoring an experimental biomass combustor using labview. Computer Applications in Engineering Education, 25(3), 392-403. doi:10.1002/cae.21806 | es_ES |
dc.description.references | Sick, V., Drake, M. C., & Fansler, T. D. (2010). High-speed imaging for direct-injection gasoline engine research and development. Experiments in Fluids, 49(4), 937-947. doi:10.1007/s00348-010-0891-3 | es_ES |
dc.description.references | SPALDING, D. B. (1979). The stability of steady exothermic chemical reactions in simple non-adiabatic systems. Combustion and Mass Transfer, 399-406. doi:10.1016/b978-0-08-022106-9.50025-5 | es_ES |
dc.description.references | Weilenmann, M., Soltic, P., Saxer, C., Forss, A.-M., & Heeb, N. (2005). Regulated and nonregulated diesel and gasoline cold start emissions at different temperatures. Atmospheric Environment, 39(13), 2433-2441. doi:10.1016/j.atmosenv.2004.03.081 | es_ES |
dc.description.references | www.upv.es. Universitat Politècnica de València. | es_ES |
dc.description.references | Zhao, H., & Ladommatos, N. (1998). Optical diagnostics for soot and temperature measurement in diesel engines. Progress in Energy and Combustion Science, 24(3), 221-255. doi:10.1016/s0360-1285(97)00033-6 | es_ES |