- -

Application of a one-dimensional spray model to teach diffusion flame fundamentals for engineering students

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Application of a one-dimensional spray model to teach diffusion flame fundamentals for engineering students

Show simple item record

Files in this item

dc.contributor.author García-Oliver, José M es_ES
dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author De La Morena, Joaquín es_ES
dc.contributor.author Monsalve-Serrano, Javier es_ES
dc.date.accessioned 2020-12-11T04:33:29Z
dc.date.available 2020-12-11T04:33:29Z
dc.date.issued 2019-09 es_ES
dc.identifier.issn 1061-3773 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156846
dc.description.abstract [EN] This study presents the application of an existing interactive application for teaching spray dynamics in engineering degrees. The model is based on spray momentum conservation and can be used to evaluate both fuel-air mixing characteristics in inert conditions as well as diffusion flame performance once combustion takes place. During a dedicated computer-lab session, the students perform parametric studies regarding the influence of the nozzle outlet diameter, the combustion chamber density and the spray cone opening angle on the mixing process, characterized by the maximum stoichiometric length. Later on, the effect of the combustion reaction on the mixing field is evaluated. The results are analyzed taking as a reference to the theoretical development made by Spalding and Schlichting for diffusion gas jets. The outcomes of several years using this technique are reported. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Computer Applications in Engineering Education es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Combustion es_ES
dc.subject Educational tool es_ES
dc.subject Engineering teaching es_ES
dc.subject Practical session es_ES
dc.subject Spray es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Application of a one-dimensional spray model to teach diffusion flame fundamentals for engineering students es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cae.22146 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation García-Oliver, JM.; García Martínez, A.; De La Morena, J.; Monsalve-Serrano, J. (2019). Application of a one-dimensional spray model to teach diffusion flame fundamentals for engineering students. Computer Applications in Engineering Education. 27(5):1202-1216. https://doi.org/10.1002/cae.22146 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/cae.22146 es_ES
dc.description.upvformatpinicio 1202 es_ES
dc.description.upvformatpfin 1216 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\392394 es_ES
dc.description.references Aleiferis, P. G., Behringer, M. K., & Malcolm, J. S. (2016). Integral Length Scales and Time Scales of Turbulence in an Optical Spark-Ignition Engine. Flow, Turbulence and Combustion, 98(2), 523-577. doi:10.1007/s10494-016-9775-9 es_ES
dc.description.references Battin-Leclerc, F. (2008). Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates. Progress in Energy and Combustion Science, 34(4), 440-498. doi:10.1016/j.pecs.2007.10.002 es_ES
dc.description.references Burke, R. D., De Jonge, N., Avola, C., & Forte, B. (2017). A virtual engine laboratory for teaching powertrain engineering. Computer Applications in Engineering Education, 25(6), 948-960. doi:10.1002/cae.21847 es_ES
dc.description.references Desantes, J. M., Pastor, J. V., García-Oliver, J. M., & Briceño, F. J. (2014). An experimental analysis on the evolution of the transient tip penetration in reacting Diesel sprays. Combustion and Flame, 161(8), 2137-2150. doi:10.1016/j.combustflame.2014.01.022 es_ES
dc.description.references Desantes, J. M., Pastor, J. V., García-Oliver, J. M., & Pastor, J. M. (2009). A 1D model for the description of mixing-controlled reacting diesel sprays. Combustion and Flame, 156(1), 234-249. doi:10.1016/j.combustflame.2008.10.008 es_ES
dc.description.references Dumouchel, C., Cousin, J., & Triballier, K. (2005). On the role of the liquid flow characteristics on low-Weber-number atomization processes. Experiments in Fluids, 38(5), 637-647. doi:10.1007/s00348-005-0944-1 es_ES
dc.description.references Edmonds, E. (1980). Where Next in Computer Aided Learning? British Journal of Educational Technology, 11(2), 97-104. doi:10.1111/j.1467-8535.1980.tb00396.x es_ES
dc.description.references Fansler, T. D., & Parrish, S. E. (2014). Spray measurement technology: a review. Measurement Science and Technology, 26(1), 012002. doi:10.1088/0957-0233/26/1/012002 es_ES
dc.description.references Gutiérrez-Romero, J. E., Zamora-Parra, B., & Esteve-Pérez, J. A. (2016). Acquisition of offshore engineering design skills on naval architecture master courses through potential flow CFD tools. Computer Applications in Engineering Education, 25(1), 48-61. doi:10.1002/cae.21778 es_ES
dc.description.references IPCC. Intergovernmental Panel on Climate Change Working Group I. Climate Change 2013: The Physical Science Basis.Long‐term Climate Change: Projections Commitments and Irreversibility  Cambridge University Press New York NY  2013:1029–136.https://doi.org/10.1017/CBO9781107415324.024 es_ES
dc.description.references W. Kirchstetter, T., Harley, R. A., Kreisberg, N. M., Stolzenburg, M. R., & Hering, S. V. (1999). On-road measurement of fine particle and nitrogen oxide emissions from light- and heavy-duty motor vehicles. Atmospheric Environment, 33(18), 2955-2968. doi:10.1016/s1352-2310(99)00089-8 es_ES
dc.description.references K. BenNaceur L.Cozzi andT.Gould.World Energy Outlook 2016.2016.https://doi.org/10.1787/weo‐2016‐en es_ES
dc.description.references M.Nesbitet al. Comparative Study on the differences between the EU and US legislation on emissions in the automotive sector.2016. es_ES
dc.description.references PASTOR, J., JAVIERLOPEZ, J., GARCIA, J., & PASTOR, J. (2008). A 1D model for the description of mixing-controlled inert diesel sprays. Fuel, 87(13-14), 2871-2885. doi:10.1016/j.fuel.2008.04.017 es_ES
dc.description.references PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009 es_ES
dc.description.references Payri, R., Salvador, F. J., Gimeno, J., & Novella, R. (2011). Flow regime effects on non-cavitating injection nozzles over spray behavior. International Journal of Heat and Fluid Flow, 32(1), 273-284. doi:10.1016/j.ijheatfluidflow.2010.10.001 es_ES
dc.description.references Perumal, K., & Ganesan, R. (2015). CFD modeling for the estimation of pressure loss coefficients of pipe fittings: An undergraduate project. Computer Applications in Engineering Education, 24(2), 180-185. doi:10.1002/cae.21695 es_ES
dc.description.references Regueiro, A., Patiño, D., Míguez, C., & Cuevas, M. (2017). A practice for engineering students based on the control and monitoring an experimental biomass combustor using labview. Computer Applications in Engineering Education, 25(3), 392-403. doi:10.1002/cae.21806 es_ES
dc.description.references Sick, V., Drake, M. C., & Fansler, T. D. (2010). High-speed imaging for direct-injection gasoline engine research and development. Experiments in Fluids, 49(4), 937-947. doi:10.1007/s00348-010-0891-3 es_ES
dc.description.references SPALDING, D. B. (1979). The stability of steady exothermic chemical reactions in simple non-adiabatic systems. Combustion and Mass Transfer, 399-406. doi:10.1016/b978-0-08-022106-9.50025-5 es_ES
dc.description.references Weilenmann, M., Soltic, P., Saxer, C., Forss, A.-M., & Heeb, N. (2005). Regulated and nonregulated diesel and gasoline cold start emissions at different temperatures. Atmospheric Environment, 39(13), 2433-2441. doi:10.1016/j.atmosenv.2004.03.081 es_ES
dc.description.references www.upv.es. Universitat Politècnica de València. es_ES
dc.description.references Zhao, H., & Ladommatos, N. (1998). Optical diagnostics for soot and temperature measurement in diesel engines. Progress in Energy and Combustion Science, 24(3), 221-255. doi:10.1016/s0360-1285(97)00033-6 es_ES


This item appears in the following Collection(s)

Show simple item record