- -

High Fundamental Frequency (HFF) Monolithic Resonator Arrays for Biosensing Applications: Design, Simulations, Experimental, Characterization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High Fundamental Frequency (HFF) Monolithic Resonator Arrays for Biosensing Applications: Design, Simulations, Experimental, Characterization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author FERNÁNDEZ DÍAZ, ROMÁN es_ES
dc.contributor.author Calero-Alcarria, María Del Señor es_ES
dc.contributor.author Reviakine, Ilya es_ES
dc.contributor.author García, José Vicente es_ES
dc.contributor.author Rocha-Gaso, María Isabel es_ES
dc.contributor.author Arnau Vives, Antonio es_ES
dc.contributor.author Jiménez Jiménez, Yolanda es_ES
dc.date.accessioned 2020-12-11T04:33:42Z
dc.date.available 2020-12-11T04:33:42Z
dc.date.issued 2021-01-01 es_ES
dc.identifier.issn 1530-437X es_ES
dc.identifier.uri http://hdl.handle.net/10251/156851
dc.description © 2020 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. es_ES
dc.description.abstract [EN] Miniaturized, high-throughput, cost-effective sensing devices are needed to advance lab-on-a-chip technologies for healthcare, security, environmental monitoring, food safety, and research applications. Quartz crystal microbalance with dissipation (QCMD) is a promising technology for the design of such sensing devices, but its applications have been limited, until now, by low throughput and significant costs. In this work, we present the design and characterization of 24-element monolithic QCMD arrays for high-throughput and low-volume sensing applications in liquid. Physical properties such as geometry and roughness, and electrical properties such as resonance frequency, quality factor, spurious mode suppression, and interactions between array elements (crosstalk), are investigated in detail. In particular, we show that the scattering parameter, S 21 , commonly measured experimentally to investigate crosstalk, contains contributions from the parasitic grounding effects associated with the acquisition circuitry. Finite element method simulations do not take grounding effects into account explicitly. However, these effects can be effectively modelled with appropriate equivalent circuit models, providing clear physical interpretation of the different contributions. We show that our array design avoids unwanted interactions between elements and discuss in detail aspects of measuring these interactions that are often-overlooked. es_ES
dc.description.sponsorship The authors would also like to thank Jorge Martínez from the Laboratory of High Frequency Circuits (LCAF) of the Universitat Politècnica de València (UPV) for assistance with profilometry, and Manuel Planes, José Luis Moya, Mercedes Tabernero, Alicia Nuez, and Joaquin Fayos from the Electron Microscopy Services of the UPV for helping with the AFM, and SEM measurements. M. Calero is the recipient of the doctoral fellowship BES-2017-080246 from the Spanish Ministry of Economy, Industry and Competitiveness, Madrid, Spain. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Sensors Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biosensors es_ES
dc.subject Crosstalk es_ES
dc.subject Finite element modeling simulation es_ES
dc.subject Food safety es_ES
dc.subject Monolithic arrays es_ES
dc.subject Nanotechnology es_ES
dc.subject Pathogen detection es_ES
dc.subject Piezoelectricity es_ES
dc.subject Point-of-care es_ES
dc.subject QCMD es_ES
dc.subject Quartz crystal microbalance es_ES
dc.subject Quartz resonators es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title High Fundamental Frequency (HFF) Monolithic Resonator Arrays for Biosensing Applications: Design, Simulations, Experimental, Characterization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/JSEN.2020.3015011 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2016-77702-R/ES/DISEÑO DE UN BIOSENSOR DE ADN BASADO EN TECNOLOGIA HFF-QCM PARA LA DETECCION DE SUSTANCIAS ADULTERANTES EN MIEL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2017-080246/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Fernández Díaz, R.; Calero-Alcarria, MDS.; Reviakine, I.; García, JV.; Rocha-Gaso, MI.; Arnau Vives, A.; Jiménez Jiménez, Y. (2021). High Fundamental Frequency (HFF) Monolithic Resonator Arrays for Biosensing Applications: Design, Simulations, Experimental, Characterization. IEEE Sensors Journal. 21(1):284-295. https://doi.org/10.1109/JSEN.2020.3015011 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/JSEN.2020.3015011 es_ES
dc.description.upvformatpinicio 284 es_ES
dc.description.upvformatpfin 295 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\417030 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem