- -

Automated segmentation of medial temporal lobe subregions on in vivo T1-weighted MRI in early stages of Alzheimer's disease

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automated segmentation of medial temporal lobe subregions on in vivo T1-weighted MRI in early stages of Alzheimer's disease

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Xie, Long es_ES
dc.contributor.author Wisse, Laura E. M. es_ES
dc.contributor.author Pluta, John es_ES
dc.contributor.author de Flores, Robin es_ES
dc.contributor.author Piskin, Virgine es_ES
dc.contributor.author Manjón Herrera, José Vicente es_ES
dc.contributor.author Wang, Hongzhi es_ES
dc.contributor.author Das, Sandhitsu R. es_ES
dc.contributor.author Ding, Song-Lin es_ES
dc.contributor.author Wolk, David A. es_ES
dc.contributor.author Yushkevich, Paul A. es_ES
dc.date.accessioned 2020-12-11T04:33:52Z
dc.date.available 2020-12-11T04:33:52Z
dc.date.issued 2019-08-15 es_ES
dc.identifier.issn 1065-9471 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156854
dc.description This is the peer reviewed version of the following article: Xie, L, Wisse, LEM, Pluta, J, et al. Automated segmentation of medial temporal lobe subregions on in vivo T1-weighted MRI in early stages of Alzheimer's disease. Hum Brain Mapp. 2019; 40: 3431 3451, which has been published in final form at https://doi.org/10.1002/hbm.24607. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Medial temporal lobe (MTL) substructures are the earliest regions affected by neurofibrillary tangle pathology-and thus are promising biomarkers for Alzheimer's disease (AD). However, automatic segmentation of the MTL using only T1-weighted (T1w) magnetic resonance imaging (MRI) is challenging due to the large anatomical variability of the MTL cortex and the confound of the dura mater, which is commonly segmented as gray matter by state-of-the-art algorithms because they have similar intensity in T1w MRI. To address these challenges, we developed a novel atlas set, consisting of 15 cognitively normal older adults and 14 patients with mild cognitive impairment with a label explicitly assigned to the dura, that can be used by the multiatlas automated pipeline (Automatic Segmentation of Hippocampal Subfields [ASHS-T1]) for the segmentation of MTL subregions, including anterior/posterior hippocampus, entorhinal cortex (ERC), Brodmann areas (BA) 35 and 36, and parahippocampal cortex on T1w MRI. Cross-validation experiments indicated good segmentation accuracy of ASHS-T1 and that the dura can be reliably separated from the cortex (6.5% mislabeled as gray matter). Conversely, FreeSurfer segmented majority of the dura mater (62.4%) as gray matter and the degree of dura mislabeling decreased with increasing disease severity. To evaluate its clinical utility, we applied the pipeline to T1w images of 663 ADNI subjects and significant volume/thickness loss is observed in BA35, ERC, and posterior hippocampus in early prodromal AD and all subregions at later stages. As such, the publicly available new atlas and ASHS-T1 could have important utility in the early diagnosis and monitoring of AD and enhancing brain-behavior studies of these regions. es_ES
dc.description.sponsorship Northern California Institute for Research and Education; Foundation for the National Institutes of Health; Canadian Institutes of Health Research; Transition Therapeutics; Takeda Pharmaceutical Company; Servier; Piramal Imaging; Pfizer Inc.; Novartis Pharmaceuticals Corporation; Neurotrack Technologies; NeuroRx Research; Meso Scale Diagnostics, LLC.; Lundbeck and Merck & Co., Inc.; Lumosity; Johnson & Johnson Pharmaceutical Research & Development LLC.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; IXICO Ltd.; GE Healthcare; Fujirebio; Genentech, Inc.; F. Hoffmann-La Roche Ltd.; EuroImmun; Eli Lilly and Company; Elan Pharmaceuticals, Inc.; Cogstate and Eisai Inc.; CereSpir, Inc.; Bristol-Myers Squibb Company; Biogen; BioClinica, Inc.; Araclon Biotech; Alzheimer's Drug Discovery Foundation; Alzheimer's Association; AbbVie; National Institute of Biomedical Imaging and Bioengineering; National Institute on Aging; Department of Defense ADNI, Grant/Award Number: W81XWH-12-2-0012; Alzheimer's Disease Neuroimaging Initiative, Grant/Award Number: U01 AG024904; Spain Ministry of Economy, Industry and Competitiveness, Grant/Award Number: DPI2017-87743-R; Foundation Philippe Chatrier; BrightFocus Foundation; National Institutes of Health, Grant/Award Numbers: R01-AG055005, R01-EB017255, P30-AG010124, R01-AG040271, R01-AG056014 es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Human Brain Mapping es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Alzheimer's disease es_ES
dc.subject Anterior and posterior hippocampus es_ES
dc.subject Biomarker es_ES
dc.subject Dura mater es_ES
dc.subject Entorhinal cortex es_ES
dc.subject Mild cognitive impairment es_ES
dc.subject Perirhinal cortex es_ES
dc.subject Segmentation es_ES
dc.subject T1-weighted magnetic resonance imaging es_ES
dc.subject Transentorhinal cortex es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Automated segmentation of medial temporal lobe subregions on in vivo T1-weighted MRI in early stages of Alzheimer's disease es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/hbm.24607 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//P30AG010124/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//U01AG024904/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01EB017255/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01AG056014/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01AG055005/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01AG040271/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOD//W81XWH-12-2-0012/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-87743-R/ES/DESARROLLO DE UNA PLATAFORMA ONLINE PARA EL ANALISIS ANATOMICO DEL CEREBRO TOLERANTE A LA PRESENCIA DE ALTERACIONES PATOLOGICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Xie, L.; Wisse, LEM.; Pluta, J.; De Flores, R.; Piskin, V.; Manjón Herrera, JV.; Wang, H.... (2019). Automated segmentation of medial temporal lobe subregions on in vivo T1-weighted MRI in early stages of Alzheimer's disease. Human Brain Mapping. 40(12):3431-3451. https://doi.org/10.1002/hbm.24607 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/hbm.24607 es_ES
dc.description.upvformatpinicio 3431 es_ES
dc.description.upvformatpfin 3451 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 40 es_ES
dc.description.issue 12 es_ES
dc.identifier.pmid 31034738 es_ES
dc.identifier.pmcid PMC6697377 es_ES
dc.relation.pasarela S\403810 es_ES
dc.contributor.funder U.S. Department of Defense es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Alzheimer's Drug Discovery Foundation es_ES
dc.description.references Apostolova, L. G., Green, A. E., Babakchanian, S., Hwang, K. S., Chou, Y.-Y., Toga, A. W., & Thompson, P. M. (2012). Hippocampal Atrophy and Ventricular Enlargement in Normal Aging, Mild Cognitive Impairment (MCI), and Alzheimer Disease. Alzheimer Disease & Associated Disorders, 26(1), 17-27. doi:10.1097/wad.0b013e3182163b62 es_ES
dc.description.references Augustinack, J. C., Huber, K. E., Stevens, A. A., Roy, M., Frosch, M. P., van der Kouwe, A. J. W., … Fischl, B. (2013). Predicting the location of human perirhinal cortex, Brodmann’s area 35, from MRI. NeuroImage, 64, 32-42. doi:10.1016/j.neuroimage.2012.08.071 es_ES
dc.description.references AVANTS, B., EPSTEIN, C., GROSSMAN, M., & GEE, J. (2008). Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26-41. doi:10.1016/j.media.2007.06.004 es_ES
dc.description.references Bender, A. R., Keresztes, A., Bodammer, N. C., Shing, Y. L., Werkle‐Bergner, M., Daugherty, A. M., … Raz, N. (2017). Optimization and validation of automated hippocampal subfield segmentation across the lifespan. Human Brain Mapping, 39(2), 916-931. doi:10.1002/hbm.23891 es_ES
dc.description.references Berron, D., Vieweg, P., Hochkeppler, A., Pluta, J. B., Ding, S.-L., Maass, A., … Wisse, L. E. M. (2017). A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI. NeuroImage: Clinical, 15, 466-482. doi:10.1016/j.nicl.2017.05.022 es_ES
dc.description.references BOBINSKI, M., WEGIEL, J., TARNAWSKI, M., BOBINSKI, M., REISBERG, B., DE LEON, M. J., … WISNIEWSKI, H. M. (1997). Relationships between Regional Neuronal Loss and Neurofibrillary Changes in the Hippocampal Formation and Duration and Severity of Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 56(4), 414-420. doi:10.1097/00005072-199704000-00010 es_ES
dc.description.references Boccardi, M., Bocchetta, M., Apostolova, L. G., Barnes, J., Bartzokis, G., Corbetta, G., … Frisoni, G. B. (2015). Delphi definition of the EADC-ADNI Harmonized Protocol for hippocampal segmentation on magnetic resonance. Alzheimer’s & Dementia, 11(2), 126-138. doi:10.1016/j.jalz.2014.02.009 es_ES
dc.description.references Boccardi, M., Bocchetta, M., Morency, F. C., Collins, D. L., Nishikawa, M., Ganzola, R., … Frisoni, G. B. (2015). Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol. Alzheimer’s & Dementia, 11(2), 175-183. doi:10.1016/j.jalz.2014.12.002 es_ES
dc.description.references Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239-259. doi:10.1007/bf00308809 es_ES
dc.description.references Braak, H., & Braak, E. (1995). Staging of alzheimer’s disease-related neurofibrillary changes. Neurobiology of Aging, 16(3), 271-278. doi:10.1016/0197-4580(95)00021-6 es_ES
dc.description.references Chan, D., Fox, N. C., Scahill, R. I., Crum, W. R., Whitwell, J. L., Leschziner, G., … Rossor, M. N. (2001). Patterns of temporal lobe atrophy in semantic dementia and Alzheimer’s disease. Annals of Neurology, 49(4), 433-442. doi:10.1002/ana.92 es_ES
dc.description.references Chételat, G., Fouquet, M., Kalpouzos, G., Denghien, I., De la Sayette, V., Viader, F., … Desgranges, B. (2008). Three-dimensional surface mapping of hippocampal atrophy progression from MCI to AD and over normal aging as assessed using voxel-based morphometry. Neuropsychologia, 46(6), 1721-1731. doi:10.1016/j.neuropsychologia.2007.11.037 es_ES
dc.description.references Collins, D. L., & Pruessner, J. C. (2010). Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. NeuroImage, 52(4), 1355-1366. doi:10.1016/j.neuroimage.2010.04.193 es_ES
dc.description.references Coupé, P., Manjón, J. V., Fonov, V., Pruessner, J., Robles, M., & Collins, D. L. (2011). Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage, 54(2), 940-954. doi:10.1016/j.neuroimage.2010.09.018 es_ES
dc.description.references Das, S. R., Mancuso, L., Olson, I. R., Arnold, S. E., & Wolk, D. A. (2015). Short-Term Memory Depends on Dissociable Medial Temporal Lobe Regions in Amnestic Mild Cognitive Impairment. Cerebral Cortex, 26(5), 2006-2017. doi:10.1093/cercor/bhv022 es_ES
dc.description.references Das, S. R., Pluta, J., Mancuso, L., Kliot, D., Yushkevich, P. A., & Wolk, D. A. (2015). Anterior and posterior MTL networks in aging and MCI. Neurobiology of Aging, 36, S141-S150.e1. doi:10.1016/j.neurobiolaging.2014.03.041 es_ES
dc.description.references Davies, R. R., Halliday, G. M., Xuereb, J. H., Kril, J. J., & Hodges, J. R. (2009). The neural basis of semantic memory: Evidence from semantic dementia. Neurobiology of Aging, 30(12), 2043-2052. doi:10.1016/j.neurobiolaging.2008.02.005 es_ES
dc.description.references De Flores, R., La Joie, R., & Chételat, G. (2015). Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease. Neuroscience, 309, 29-50. doi:10.1016/j.neuroscience.2015.08.033 es_ES
dc.description.references De Flores, R., La Joie, R., Landeau, B., Perrotin, A., Mézenge, F., de La Sayette, V., … Chételat, G. (2014). Effects of age and Alzheimer’s disease on hippocampal subfields. Human Brain Mapping, 36(2), 463-474. doi:10.1002/hbm.22640 es_ES
dc.description.references De Vita, E., Thomas, D. L., Roberts, S., Parkes, H. G., Turner, R., Kinchesh, P., … Ordidge, R. J. (2003). High resolution MRI of the brain at 4.7 Tesla using fast spin echo imaging. The British Journal of Radiology, 76(909), 631-637. doi:10.1259/bjr/69317841 es_ES
dc.description.references Delli Pizzi, S., Franciotti, R., Bubbico, G., Thomas, A., Onofrj, M., & Bonanni, L. (2016). Atrophy of hippocampal subfields and adjacent extrahippocampal structures in dementia with Lewy bodies and Alzheimer’s disease. Neurobiology of Aging, 40, 103-109. doi:10.1016/j.neurobiolaging.2016.01.010 es_ES
dc.description.references Dice, L. R. (1945). Measures of the Amount of Ecologic Association Between Species. Ecology, 26(3), 297-302. doi:10.2307/1932409 es_ES
dc.description.references Dickerson, B. C., Goncharova, I., Sullivan, M. P., Forchetti, C., Wilson, R. S., Bennett, D. A., … deToledo-Morrell, L. (2001). MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease ☆ ☆This research was supported by grants P01 AG09466 and P30 AG10161 from the National Institute on Aging, National Institutes of Health. Neurobiology of Aging, 22(5), 747-754. doi:10.1016/s0197-4580(01)00271-8 es_ES
dc.description.references Ding, S.-L., & Van Hoesen, G. W. (2010). Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers. Human Brain Mapping, 31(9), 1359-1379. doi:10.1002/hbm.20940 es_ES
dc.description.references Ding, S.-L., Van Hoesen, G. W., Cassell, M. D., & Poremba, A. (2009). Parcellation of human temporal polar cortex: A combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. The Journal of Comparative Neurology, 514(6), 595-623. doi:10.1002/cne.22053 es_ES
dc.description.references Ekstrom, A. D., Bazih, A. J., Suthana, N. A., Al-Hakim, R., Ogura, K., Zeineh, M., … Bookheimer, S. Y. (2009). Advances in high-resolution imaging and computational unfolding of the human hippocampus. NeuroImage, 47(1), 42-49. doi:10.1016/j.neuroimage.2009.03.017 es_ES
dc.description.references Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774-781. doi:10.1016/j.neuroimage.2012.01.021 es_ES
dc.description.references Fischl, B., Stevens, A. A., Rajendran, N., Yeo, B. T. T., Greve, D. N., Van Leemput, K., … Augustinack, J. C. (2009). Predicting the location of entorhinal cortex from MRI. NeuroImage, 47(1), 8-17. doi:10.1016/j.neuroimage.2009.04.033 es_ES
dc.description.references Frisoni, G. B., Jack, C. R., Bocchetta, M., Bauer, C., Frederiksen, K. S., Liu, Y., … Cavedo, E. (2015). The EADC-ADNI Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: Evidence of validity. Alzheimer’s & Dementia, 11(2), 111-125. doi:10.1016/j.jalz.2014.05.1756 es_ES
dc.description.references Fukutani, Y., Kobayashi, K., Nakamura, I., Watanabe, K., Isaki, K., & Cairns, N. J. (1995). Neurons, intracellular and extracellular neurofibrillary tangles in subdivisions of the hippocampal cortex in normal ageing and Alzheimer’s disease. Neuroscience Letters, 200(1), 57-60. doi:10.1016/0304-3940(95)12083-g es_ES
dc.description.references Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., … Jenkinson, M. (2013). The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage, 80, 105-124. doi:10.1016/j.neuroimage.2013.04.127 es_ES
dc.description.references Greene, S. J., & Killiany, R. J. (2011). Hippocampal Subregions are Differentially Affected in the Progression to Alzheimer’s Disease. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 295(1), 132-140. doi:10.1002/ar.21493 es_ES
dc.description.references Hu, S., Coupé, P., Pruessner, J. C., & Collins, D. L. (2012). Nonlocal regularization for active appearance model: Application to medial temporal lobe segmentation. Human Brain Mapping, 35(2), 377-395. doi:10.1002/hbm.22183 es_ES
dc.description.references Iglesias, J. E., Augustinack, J. C., Nguyen, K., Player, C. M., Player, A., Wright, M., … Van Leemput, K. (2015). A computational atlas of the hippocampal formation using ex vivo , ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. NeuroImage, 115, 117-137. doi:10.1016/j.neuroimage.2015.04.042 es_ES
dc.description.references Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Feldman, H. H., Frisoni, G. B., … Dubois, B. (2016). A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology, 87(5), 539-547. doi:10.1212/wnl.0000000000002923 es_ES
dc.description.references Jack, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., … Harvey, D. (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27(4), 685-691. doi:10.1002/jmri.21049 es_ES
dc.description.references Kim, H., Caldairou, B., Bernasconi, A., & Bernasconi, N. (2018). Multi-Template Mesiotemporal Lobe Segmentation: Effects of Surface and Volume Feature Modeling. Frontiers in Neuroinformatics, 12. doi:10.3389/fninf.2018.00039 es_ES
dc.description.references Kivisaari, S. L., Probst, A., & Taylor, K. I. (2013). The Perirhinal, Entorhinal, and Parahippocampal Cortices and Hippocampus: An Overview of Functional Anatomy and Protocol for Their Segmentation in MR Images. fMRI, 239-267. doi:10.1007/978-3-642-34342-1_19 es_ES
dc.description.references Krumm, S., Kivisaari, S. L., Probst, A., Monsch, A. U., Reinhardt, J., Ulmer, S., … Taylor, K. I. (2016). Cortical thinning of parahippocampal subregions in very early Alzheimer’s disease. Neurobiology of Aging, 38, 188-196. doi:10.1016/j.neurobiolaging.2015.11.001 es_ES
dc.description.references Landau, S. M., Mintun, M. A., Joshi, A. D., Koeppe, R. A., Petersen, R. C., … Aisen, P. S. (2012). Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Annals of Neurology, 72(4), 578-586. doi:10.1002/ana.23650 es_ES
dc.description.references Lehmann, M., Douiri, A., Kim, L. G., Modat, M., Chan, D., Ourselin, S., … Fox, N. C. (2010). Atrophy patterns in Alzheimer’s disease and semantic dementia: A comparison of FreeSurfer and manual volumetric measurements. NeuroImage, 49(3), 2264-2274. doi:10.1016/j.neuroimage.2009.10.056 es_ES
dc.description.references Leow, A. D., Klunder, A. D., Jack, C. R., Toga, A. W., Dale, A. M., Bernstein, M. A., … Thompson, P. M. (2006). Longitudinal stability of MRI for mapping brain change using tensor-based morphometry. NeuroImage, 31(2), 627-640. doi:10.1016/j.neuroimage.2005.12.013 es_ES
dc.description.references Leung, K. K., Barnes, J., Ridgway, G. R., Bartlett, J. W., Clarkson, M. J., Macdonald, K., … Ourselin, S. (2010). Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer’s disease. NeuroImage, 51(4), 1345-1359. doi:10.1016/j.neuroimage.2010.03.018 es_ES
dc.description.references Mah, L., Binns, M. A., & Steffens, D. C. (2015). Anxiety Symptoms in Amnestic Mild Cognitive Impairment Are Associated with Medial Temporal Atrophy and Predict Conversion to Alzheimer Disease. The American Journal of Geriatric Psychiatry, 23(5), 466-476. doi:10.1016/j.jagp.2014.10.005 es_ES
dc.description.references Malykhin, N. V., Bouchard, T. P., Camicioli, R., & Coupland, N. J. (2008). Aging hippocampus and amygdala. NeuroReport, 19(5), 543-547. doi:10.1097/wnr.0b013e3282f8b18c es_ES
dc.description.references Malykhin, N. V., Bouchard, T. P., Ogilvie, C. J., Coupland, N. J., Seres, P., & Camicioli, R. (2007). Three-dimensional volumetric analysis and reconstruction of amygdala and hippocampal head, body and tail. Psychiatry Research: Neuroimaging, 155(2), 155-165. doi:10.1016/j.pscychresns.2006.11.011 es_ES
dc.description.references Manjón, J. V., Coupé, P., Buades, A., Fonov, V., Louis Collins, D., & Robles, M. (2010). Non-local MRI upsampling. Medical Image Analysis, 14(6), 784-792. doi:10.1016/j.media.2010.05.010 es_ES
dc.description.references Martin, S. B., Smith, C. D., Collins, H. R., Schmitt, F. A., & Gold, B. T. (2010). Evidence that volume of anterior medial temporal lobe is reduced in seniors destined for mild cognitive impairment. Neurobiology of Aging, 31(7), 1099-1106. doi:10.1016/j.neurobiolaging.2008.08.010 es_ES
dc.description.references Mishra, S., Gordon, B. A., Su, Y., Christensen, J., Friedrichsen, K., Jackson, K., … Benzinger, T. L. S. (2017). AV-1451 PET imaging of tau pathology in preclinical Alzheimer disease: Defining a summary measure. NeuroImage, 161, 171-178. doi:10.1016/j.neuroimage.2017.07.050 es_ES
dc.description.references Mufson, E. J., & Pandya, D. N. (1984). Some observations on the course and composition of the cingulum bundle in the rhesus monkey. The Journal of Comparative Neurology, 225(1), 31-43. doi:10.1002/cne.902250105 es_ES
dc.description.references Olsen, R. K., Palombo, D. J., Rabin, J. S., Levine, B., Ryan, J. D., & Rosenbaum, R. S. (2013). Volumetric analysis of medial temporal lobe subregions in developmental amnesia using high‐resolution magnetic resonance imaging. Hippocampus, 23(10), 855-860. doi:10.1002/hipo.22153 es_ES
dc.description.references Olsen, R. K., Yeung, L.-K., Noly-Gandon, A., D’Angelo, M. C., Kacollja, A., Smith, V. M., … Barense, M. D. (2017). Human anterolateral entorhinal cortex volumes are associated with cognitive decline in aging prior to clinical diagnosis. Neurobiology of Aging, 57, 195-205. doi:10.1016/j.neurobiolaging.2017.04.025 es_ES
dc.description.references Palmqvist, S., Schöll, M., Strandberg, O., Mattsson, N., Stomrud, E., Zetterberg, H., … Hansson, O. (2017). Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nature Communications, 8(1). doi:10.1038/s41467-017-01150-x es_ES
dc.description.references Pasquini, L., Scherr, M., Tahmasian, M., Myers, N. E., Ortner, M., Kurz, A., … Sorg, C. (2016). Increased Intrinsic Activity of Medial-Temporal Lobe Subregions is Associated with Decreased Cortical Thickness of Medial-Parietal Areas in Patients with Alzheimer’s Disease Dementia. Journal of Alzheimer’s Disease, 51(1), 313-326. doi:10.3233/jad-150823 es_ES
dc.description.references Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183-194. doi:10.1111/j.1365-2796.2004.01388.x es_ES
dc.description.references Petersen, R. C., Roberts, R. O., Knopman, D. S., Boeve, B. F., Geda, Y. E., Ivnik, R. J., … Jack, C. R. (2009). Mild Cognitive Impairment. Archives of Neurology, 66(12). doi:10.1001/archneurol.2009.266 es_ES
dc.description.references Preston, A. R., Bornstein, A. M., Hutchinson, J. B., Gaare, M. E., Glover, G. H., & Wagner, A. D. (2010). High-resolution fMRI of Content-sensitive Subsequent Memory Responses in Human Medial Temporal Lobe. Journal of Cognitive Neuroscience, 22(1), 156-173. doi:10.1162/jocn.2009.21195 es_ES
dc.description.references Qiu, A., Fennema-Notestine, C., Dale, A. M., & Miller, M. I. (2009). Regional shape abnormalities in mild cognitive impairment and Alzheimer’s disease. NeuroImage, 45(3), 656-661. doi:10.1016/j.neuroimage.2009.01.013 es_ES
dc.description.references Wisse, L. E. M., Gerritsen, L., Zwanenburg, J. J. M., Kuijf, H. J., Luijten, P. R., Biessels, G. J., & Geerlings, M. I. (2012). Subfields of the hippocampal formation at 7T MRI: In vivo volumetric assessment. NeuroImage, 61(4), 1043-1049. doi:10.1016/j.neuroimage.2012.03.023 es_ES
dc.description.references Wisse, L. E. M., Biessels, G. J., & Geerlings, M. I. (2014). A Critical Appraisal of the Hippocampal Subfield Segmentation Package in FreeSurfer. Frontiers in Aging Neuroscience, 6. doi:10.3389/fnagi.2014.00261 es_ES
dc.description.references Witter, M., Van Hoesen, G., & Amaral, D. (1989). Topographical organization of the entorhinal projection to the dentate gyrus of the monkey. The Journal of Neuroscience, 9(1), 216-228. doi:10.1523/jneurosci.09-01-00216.1989 es_ES
dc.description.references Wolk, D. A., & Dickerson, B. C. (2011). Fractionating verbal episodic memory in Alzheimer’s disease. NeuroImage, 54(2), 1530-1539. doi:10.1016/j.neuroimage.2010.09.005 es_ES
dc.description.references Xie, L., Shinohara, R. T., Ittyerah, R., Kuijf, H. J., Pluta, J. B., Blom, K., … Wisse, L. E. M. (2018). Automated Multi-Atlas Segmentation of Hippocampal and Extrahippocampal Subregions in Alzheimer’s Disease at 3T and 7T: What Atlas Composition Works Best? Journal of Alzheimer’s Disease, 63(1), 217-225. doi:10.3233/jad-170932 es_ES
dc.description.references Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage, 31(3), 1116-1128. doi:10.1016/j.neuroimage.2006.01.015 es_ES
dc.description.references Zeineh, M. M., Engel, S. A., Thompson, P. M., & Bookheimer, S. Y. (2001). Unfolding the human hippocampus with high resolution structural and functional MRI. The Anatomical Record, 265(2), 111-120. doi:10.1002/ar.1061 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem