Mostrar el registro sencillo del ítem
dc.contributor.author | Xie, Long | es_ES |
dc.contributor.author | Wisse, Laura E. M. | es_ES |
dc.contributor.author | Pluta, John | es_ES |
dc.contributor.author | de Flores, Robin | es_ES |
dc.contributor.author | Piskin, Virgine | es_ES |
dc.contributor.author | Manjón Herrera, José Vicente | es_ES |
dc.contributor.author | Wang, Hongzhi | es_ES |
dc.contributor.author | Das, Sandhitsu R. | es_ES |
dc.contributor.author | Ding, Song-Lin | es_ES |
dc.contributor.author | Wolk, David A. | es_ES |
dc.contributor.author | Yushkevich, Paul A. | es_ES |
dc.date.accessioned | 2020-12-11T04:33:52Z | |
dc.date.available | 2020-12-11T04:33:52Z | |
dc.date.issued | 2019-08-15 | es_ES |
dc.identifier.issn | 1065-9471 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156854 | |
dc.description | This is the peer reviewed version of the following article: Xie, L, Wisse, LEM, Pluta, J, et al. Automated segmentation of medial temporal lobe subregions on in vivo T1-weighted MRI in early stages of Alzheimer's disease. Hum Brain Mapp. 2019; 40: 3431 3451, which has been published in final form at https://doi.org/10.1002/hbm.24607. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] Medial temporal lobe (MTL) substructures are the earliest regions affected by neurofibrillary tangle pathology-and thus are promising biomarkers for Alzheimer's disease (AD). However, automatic segmentation of the MTL using only T1-weighted (T1w) magnetic resonance imaging (MRI) is challenging due to the large anatomical variability of the MTL cortex and the confound of the dura mater, which is commonly segmented as gray matter by state-of-the-art algorithms because they have similar intensity in T1w MRI. To address these challenges, we developed a novel atlas set, consisting of 15 cognitively normal older adults and 14 patients with mild cognitive impairment with a label explicitly assigned to the dura, that can be used by the multiatlas automated pipeline (Automatic Segmentation of Hippocampal Subfields [ASHS-T1]) for the segmentation of MTL subregions, including anterior/posterior hippocampus, entorhinal cortex (ERC), Brodmann areas (BA) 35 and 36, and parahippocampal cortex on T1w MRI. Cross-validation experiments indicated good segmentation accuracy of ASHS-T1 and that the dura can be reliably separated from the cortex (6.5% mislabeled as gray matter). Conversely, FreeSurfer segmented majority of the dura mater (62.4%) as gray matter and the degree of dura mislabeling decreased with increasing disease severity. To evaluate its clinical utility, we applied the pipeline to T1w images of 663 ADNI subjects and significant volume/thickness loss is observed in BA35, ERC, and posterior hippocampus in early prodromal AD and all subregions at later stages. As such, the publicly available new atlas and ASHS-T1 could have important utility in the early diagnosis and monitoring of AD and enhancing brain-behavior studies of these regions. | es_ES |
dc.description.sponsorship | Northern California Institute for Research and Education; Foundation for the National Institutes of Health; Canadian Institutes of Health Research; Transition Therapeutics; Takeda Pharmaceutical Company; Servier; Piramal Imaging; Pfizer Inc.; Novartis Pharmaceuticals Corporation; Neurotrack Technologies; NeuroRx Research; Meso Scale Diagnostics, LLC.; Lundbeck and Merck & Co., Inc.; Lumosity; Johnson & Johnson Pharmaceutical Research & Development LLC.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; IXICO Ltd.; GE Healthcare; Fujirebio; Genentech, Inc.; F. Hoffmann-La Roche Ltd.; EuroImmun; Eli Lilly and Company; Elan Pharmaceuticals, Inc.; Cogstate and Eisai Inc.; CereSpir, Inc.; Bristol-Myers Squibb Company; Biogen; BioClinica, Inc.; Araclon Biotech; Alzheimer's Drug Discovery Foundation; Alzheimer's Association; AbbVie; National Institute of Biomedical Imaging and Bioengineering; National Institute on Aging; Department of Defense ADNI, Grant/Award Number: W81XWH-12-2-0012; Alzheimer's Disease Neuroimaging Initiative, Grant/Award Number: U01 AG024904; Spain Ministry of Economy, Industry and Competitiveness, Grant/Award Number: DPI2017-87743-R; Foundation Philippe Chatrier; BrightFocus Foundation; National Institutes of Health, Grant/Award Numbers: R01-AG055005, R01-EB017255, P30-AG010124, R01-AG040271, R01-AG056014 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Human Brain Mapping | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Alzheimer's disease | es_ES |
dc.subject | Anterior and posterior hippocampus | es_ES |
dc.subject | Biomarker | es_ES |
dc.subject | Dura mater | es_ES |
dc.subject | Entorhinal cortex | es_ES |
dc.subject | Mild cognitive impairment | es_ES |
dc.subject | Perirhinal cortex | es_ES |
dc.subject | Segmentation | es_ES |
dc.subject | T1-weighted magnetic resonance imaging | es_ES |
dc.subject | Transentorhinal cortex | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Automated segmentation of medial temporal lobe subregions on in vivo T1-weighted MRI in early stages of Alzheimer's disease | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/hbm.24607 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//P30AG010124/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//U01AG024904/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//R01EB017255/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//R01AG056014/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//R01AG055005/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//R01AG040271/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DOD//W81XWH-12-2-0012/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-87743-R/ES/DESARROLLO DE UNA PLATAFORMA ONLINE PARA EL ANALISIS ANATOMICO DEL CEREBRO TOLERANTE A LA PRESENCIA DE ALTERACIONES PATOLOGICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Xie, L.; Wisse, LEM.; Pluta, J.; De Flores, R.; Piskin, V.; Manjón Herrera, JV.; Wang, H.... (2019). Automated segmentation of medial temporal lobe subregions on in vivo T1-weighted MRI in early stages of Alzheimer's disease. Human Brain Mapping. 40(12):3431-3451. https://doi.org/10.1002/hbm.24607 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/hbm.24607 | es_ES |
dc.description.upvformatpinicio | 3431 | es_ES |
dc.description.upvformatpfin | 3451 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 40 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.pmid | 31034738 | es_ES |
dc.identifier.pmcid | PMC6697377 | es_ES |
dc.relation.pasarela | S\403810 | es_ES |
dc.contributor.funder | U.S. Department of Defense | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | National Institutes of Health, EEUU | es_ES |
dc.contributor.funder | Alzheimer's Drug Discovery Foundation | es_ES |
dc.description.references | Apostolova, L. G., Green, A. E., Babakchanian, S., Hwang, K. S., Chou, Y.-Y., Toga, A. W., & Thompson, P. M. (2012). Hippocampal Atrophy and Ventricular Enlargement in Normal Aging, Mild Cognitive Impairment (MCI), and Alzheimer Disease. Alzheimer Disease & Associated Disorders, 26(1), 17-27. doi:10.1097/wad.0b013e3182163b62 | es_ES |
dc.description.references | Augustinack, J. C., Huber, K. E., Stevens, A. A., Roy, M., Frosch, M. P., van der Kouwe, A. J. W., … Fischl, B. (2013). Predicting the location of human perirhinal cortex, Brodmann’s area 35, from MRI. NeuroImage, 64, 32-42. doi:10.1016/j.neuroimage.2012.08.071 | es_ES |
dc.description.references | AVANTS, B., EPSTEIN, C., GROSSMAN, M., & GEE, J. (2008). Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26-41. doi:10.1016/j.media.2007.06.004 | es_ES |
dc.description.references | Bender, A. R., Keresztes, A., Bodammer, N. C., Shing, Y. L., Werkle‐Bergner, M., Daugherty, A. M., … Raz, N. (2017). Optimization and validation of automated hippocampal subfield segmentation across the lifespan. Human Brain Mapping, 39(2), 916-931. doi:10.1002/hbm.23891 | es_ES |
dc.description.references | Berron, D., Vieweg, P., Hochkeppler, A., Pluta, J. B., Ding, S.-L., Maass, A., … Wisse, L. E. M. (2017). A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI. NeuroImage: Clinical, 15, 466-482. doi:10.1016/j.nicl.2017.05.022 | es_ES |
dc.description.references | BOBINSKI, M., WEGIEL, J., TARNAWSKI, M., BOBINSKI, M., REISBERG, B., DE LEON, M. J., … WISNIEWSKI, H. M. (1997). Relationships between Regional Neuronal Loss and Neurofibrillary Changes in the Hippocampal Formation and Duration and Severity of Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 56(4), 414-420. doi:10.1097/00005072-199704000-00010 | es_ES |
dc.description.references | Boccardi, M., Bocchetta, M., Apostolova, L. G., Barnes, J., Bartzokis, G., Corbetta, G., … Frisoni, G. B. (2015). Delphi definition of the EADC-ADNI Harmonized Protocol for hippocampal segmentation on magnetic resonance. Alzheimer’s & Dementia, 11(2), 126-138. doi:10.1016/j.jalz.2014.02.009 | es_ES |
dc.description.references | Boccardi, M., Bocchetta, M., Morency, F. C., Collins, D. L., Nishikawa, M., Ganzola, R., … Frisoni, G. B. (2015). Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol. Alzheimer’s & Dementia, 11(2), 175-183. doi:10.1016/j.jalz.2014.12.002 | es_ES |
dc.description.references | Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239-259. doi:10.1007/bf00308809 | es_ES |
dc.description.references | Braak, H., & Braak, E. (1995). Staging of alzheimer’s disease-related neurofibrillary changes. Neurobiology of Aging, 16(3), 271-278. doi:10.1016/0197-4580(95)00021-6 | es_ES |
dc.description.references | Chan, D., Fox, N. C., Scahill, R. I., Crum, W. R., Whitwell, J. L., Leschziner, G., … Rossor, M. N. (2001). Patterns of temporal lobe atrophy in semantic dementia and Alzheimer’s disease. Annals of Neurology, 49(4), 433-442. doi:10.1002/ana.92 | es_ES |
dc.description.references | Chételat, G., Fouquet, M., Kalpouzos, G., Denghien, I., De la Sayette, V., Viader, F., … Desgranges, B. (2008). Three-dimensional surface mapping of hippocampal atrophy progression from MCI to AD and over normal aging as assessed using voxel-based morphometry. Neuropsychologia, 46(6), 1721-1731. doi:10.1016/j.neuropsychologia.2007.11.037 | es_ES |
dc.description.references | Collins, D. L., & Pruessner, J. C. (2010). Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. NeuroImage, 52(4), 1355-1366. doi:10.1016/j.neuroimage.2010.04.193 | es_ES |
dc.description.references | Coupé, P., Manjón, J. V., Fonov, V., Pruessner, J., Robles, M., & Collins, D. L. (2011). Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage, 54(2), 940-954. doi:10.1016/j.neuroimage.2010.09.018 | es_ES |
dc.description.references | Das, S. R., Mancuso, L., Olson, I. R., Arnold, S. E., & Wolk, D. A. (2015). Short-Term Memory Depends on Dissociable Medial Temporal Lobe Regions in Amnestic Mild Cognitive Impairment. Cerebral Cortex, 26(5), 2006-2017. doi:10.1093/cercor/bhv022 | es_ES |
dc.description.references | Das, S. R., Pluta, J., Mancuso, L., Kliot, D., Yushkevich, P. A., & Wolk, D. A. (2015). Anterior and posterior MTL networks in aging and MCI. Neurobiology of Aging, 36, S141-S150.e1. doi:10.1016/j.neurobiolaging.2014.03.041 | es_ES |
dc.description.references | Davies, R. R., Halliday, G. M., Xuereb, J. H., Kril, J. J., & Hodges, J. R. (2009). The neural basis of semantic memory: Evidence from semantic dementia. Neurobiology of Aging, 30(12), 2043-2052. doi:10.1016/j.neurobiolaging.2008.02.005 | es_ES |
dc.description.references | De Flores, R., La Joie, R., & Chételat, G. (2015). Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease. Neuroscience, 309, 29-50. doi:10.1016/j.neuroscience.2015.08.033 | es_ES |
dc.description.references | De Flores, R., La Joie, R., Landeau, B., Perrotin, A., Mézenge, F., de La Sayette, V., … Chételat, G. (2014). Effects of age and Alzheimer’s disease on hippocampal subfields. Human Brain Mapping, 36(2), 463-474. doi:10.1002/hbm.22640 | es_ES |
dc.description.references | De Vita, E., Thomas, D. L., Roberts, S., Parkes, H. G., Turner, R., Kinchesh, P., … Ordidge, R. J. (2003). High resolution MRI of the brain at 4.7 Tesla using fast spin echo imaging. The British Journal of Radiology, 76(909), 631-637. doi:10.1259/bjr/69317841 | es_ES |
dc.description.references | Delli Pizzi, S., Franciotti, R., Bubbico, G., Thomas, A., Onofrj, M., & Bonanni, L. (2016). Atrophy of hippocampal subfields and adjacent extrahippocampal structures in dementia with Lewy bodies and Alzheimer’s disease. Neurobiology of Aging, 40, 103-109. doi:10.1016/j.neurobiolaging.2016.01.010 | es_ES |
dc.description.references | Dice, L. R. (1945). Measures of the Amount of Ecologic Association Between Species. Ecology, 26(3), 297-302. doi:10.2307/1932409 | es_ES |
dc.description.references | Dickerson, B. C., Goncharova, I., Sullivan, M. P., Forchetti, C., Wilson, R. S., Bennett, D. A., … deToledo-Morrell, L. (2001). MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease ☆ ☆This research was supported by grants P01 AG09466 and P30 AG10161 from the National Institute on Aging, National Institutes of Health. Neurobiology of Aging, 22(5), 747-754. doi:10.1016/s0197-4580(01)00271-8 | es_ES |
dc.description.references | Ding, S.-L., & Van Hoesen, G. W. (2010). Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers. Human Brain Mapping, 31(9), 1359-1379. doi:10.1002/hbm.20940 | es_ES |
dc.description.references | Ding, S.-L., Van Hoesen, G. W., Cassell, M. D., & Poremba, A. (2009). Parcellation of human temporal polar cortex: A combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. The Journal of Comparative Neurology, 514(6), 595-623. doi:10.1002/cne.22053 | es_ES |
dc.description.references | Ekstrom, A. D., Bazih, A. J., Suthana, N. A., Al-Hakim, R., Ogura, K., Zeineh, M., … Bookheimer, S. Y. (2009). Advances in high-resolution imaging and computational unfolding of the human hippocampus. NeuroImage, 47(1), 42-49. doi:10.1016/j.neuroimage.2009.03.017 | es_ES |
dc.description.references | Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774-781. doi:10.1016/j.neuroimage.2012.01.021 | es_ES |
dc.description.references | Fischl, B., Stevens, A. A., Rajendran, N., Yeo, B. T. T., Greve, D. N., Van Leemput, K., … Augustinack, J. C. (2009). Predicting the location of entorhinal cortex from MRI. NeuroImage, 47(1), 8-17. doi:10.1016/j.neuroimage.2009.04.033 | es_ES |
dc.description.references | Frisoni, G. B., Jack, C. R., Bocchetta, M., Bauer, C., Frederiksen, K. S., Liu, Y., … Cavedo, E. (2015). The EADC-ADNI Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: Evidence of validity. Alzheimer’s & Dementia, 11(2), 111-125. doi:10.1016/j.jalz.2014.05.1756 | es_ES |
dc.description.references | Fukutani, Y., Kobayashi, K., Nakamura, I., Watanabe, K., Isaki, K., & Cairns, N. J. (1995). Neurons, intracellular and extracellular neurofibrillary tangles in subdivisions of the hippocampal cortex in normal ageing and Alzheimer’s disease. Neuroscience Letters, 200(1), 57-60. doi:10.1016/0304-3940(95)12083-g | es_ES |
dc.description.references | Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., … Jenkinson, M. (2013). The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage, 80, 105-124. doi:10.1016/j.neuroimage.2013.04.127 | es_ES |
dc.description.references | Greene, S. J., & Killiany, R. J. (2011). Hippocampal Subregions are Differentially Affected in the Progression to Alzheimer’s Disease. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 295(1), 132-140. doi:10.1002/ar.21493 | es_ES |
dc.description.references | Hu, S., Coupé, P., Pruessner, J. C., & Collins, D. L. (2012). Nonlocal regularization for active appearance model: Application to medial temporal lobe segmentation. Human Brain Mapping, 35(2), 377-395. doi:10.1002/hbm.22183 | es_ES |
dc.description.references | Iglesias, J. E., Augustinack, J. C., Nguyen, K., Player, C. M., Player, A., Wright, M., … Van Leemput, K. (2015). A computational atlas of the hippocampal formation using ex vivo , ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. NeuroImage, 115, 117-137. doi:10.1016/j.neuroimage.2015.04.042 | es_ES |
dc.description.references | Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Feldman, H. H., Frisoni, G. B., … Dubois, B. (2016). A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology, 87(5), 539-547. doi:10.1212/wnl.0000000000002923 | es_ES |
dc.description.references | Jack, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., … Harvey, D. (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27(4), 685-691. doi:10.1002/jmri.21049 | es_ES |
dc.description.references | Kim, H., Caldairou, B., Bernasconi, A., & Bernasconi, N. (2018). Multi-Template Mesiotemporal Lobe Segmentation: Effects of Surface and Volume Feature Modeling. Frontiers in Neuroinformatics, 12. doi:10.3389/fninf.2018.00039 | es_ES |
dc.description.references | Kivisaari, S. L., Probst, A., & Taylor, K. I. (2013). The Perirhinal, Entorhinal, and Parahippocampal Cortices and Hippocampus: An Overview of Functional Anatomy and Protocol for Their Segmentation in MR Images. fMRI, 239-267. doi:10.1007/978-3-642-34342-1_19 | es_ES |
dc.description.references | Krumm, S., Kivisaari, S. L., Probst, A., Monsch, A. U., Reinhardt, J., Ulmer, S., … Taylor, K. I. (2016). Cortical thinning of parahippocampal subregions in very early Alzheimer’s disease. Neurobiology of Aging, 38, 188-196. doi:10.1016/j.neurobiolaging.2015.11.001 | es_ES |
dc.description.references | Landau, S. M., Mintun, M. A., Joshi, A. D., Koeppe, R. A., Petersen, R. C., … Aisen, P. S. (2012). Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Annals of Neurology, 72(4), 578-586. doi:10.1002/ana.23650 | es_ES |
dc.description.references | Lehmann, M., Douiri, A., Kim, L. G., Modat, M., Chan, D., Ourselin, S., … Fox, N. C. (2010). Atrophy patterns in Alzheimer’s disease and semantic dementia: A comparison of FreeSurfer and manual volumetric measurements. NeuroImage, 49(3), 2264-2274. doi:10.1016/j.neuroimage.2009.10.056 | es_ES |
dc.description.references | Leow, A. D., Klunder, A. D., Jack, C. R., Toga, A. W., Dale, A. M., Bernstein, M. A., … Thompson, P. M. (2006). Longitudinal stability of MRI for mapping brain change using tensor-based morphometry. NeuroImage, 31(2), 627-640. doi:10.1016/j.neuroimage.2005.12.013 | es_ES |
dc.description.references | Leung, K. K., Barnes, J., Ridgway, G. R., Bartlett, J. W., Clarkson, M. J., Macdonald, K., … Ourselin, S. (2010). Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer’s disease. NeuroImage, 51(4), 1345-1359. doi:10.1016/j.neuroimage.2010.03.018 | es_ES |
dc.description.references | Mah, L., Binns, M. A., & Steffens, D. C. (2015). Anxiety Symptoms in Amnestic Mild Cognitive Impairment Are Associated with Medial Temporal Atrophy and Predict Conversion to Alzheimer Disease. The American Journal of Geriatric Psychiatry, 23(5), 466-476. doi:10.1016/j.jagp.2014.10.005 | es_ES |
dc.description.references | Malykhin, N. V., Bouchard, T. P., Camicioli, R., & Coupland, N. J. (2008). Aging hippocampus and amygdala. NeuroReport, 19(5), 543-547. doi:10.1097/wnr.0b013e3282f8b18c | es_ES |
dc.description.references | Malykhin, N. V., Bouchard, T. P., Ogilvie, C. J., Coupland, N. J., Seres, P., & Camicioli, R. (2007). Three-dimensional volumetric analysis and reconstruction of amygdala and hippocampal head, body and tail. Psychiatry Research: Neuroimaging, 155(2), 155-165. doi:10.1016/j.pscychresns.2006.11.011 | es_ES |
dc.description.references | Manjón, J. V., Coupé, P., Buades, A., Fonov, V., Louis Collins, D., & Robles, M. (2010). Non-local MRI upsampling. Medical Image Analysis, 14(6), 784-792. doi:10.1016/j.media.2010.05.010 | es_ES |
dc.description.references | Martin, S. B., Smith, C. D., Collins, H. R., Schmitt, F. A., & Gold, B. T. (2010). Evidence that volume of anterior medial temporal lobe is reduced in seniors destined for mild cognitive impairment. Neurobiology of Aging, 31(7), 1099-1106. doi:10.1016/j.neurobiolaging.2008.08.010 | es_ES |
dc.description.references | Mishra, S., Gordon, B. A., Su, Y., Christensen, J., Friedrichsen, K., Jackson, K., … Benzinger, T. L. S. (2017). AV-1451 PET imaging of tau pathology in preclinical Alzheimer disease: Defining a summary measure. NeuroImage, 161, 171-178. doi:10.1016/j.neuroimage.2017.07.050 | es_ES |
dc.description.references | Mufson, E. J., & Pandya, D. N. (1984). Some observations on the course and composition of the cingulum bundle in the rhesus monkey. The Journal of Comparative Neurology, 225(1), 31-43. doi:10.1002/cne.902250105 | es_ES |
dc.description.references | Olsen, R. K., Palombo, D. J., Rabin, J. S., Levine, B., Ryan, J. D., & Rosenbaum, R. S. (2013). Volumetric analysis of medial temporal lobe subregions in developmental amnesia using high‐resolution magnetic resonance imaging. Hippocampus, 23(10), 855-860. doi:10.1002/hipo.22153 | es_ES |
dc.description.references | Olsen, R. K., Yeung, L.-K., Noly-Gandon, A., D’Angelo, M. C., Kacollja, A., Smith, V. M., … Barense, M. D. (2017). Human anterolateral entorhinal cortex volumes are associated with cognitive decline in aging prior to clinical diagnosis. Neurobiology of Aging, 57, 195-205. doi:10.1016/j.neurobiolaging.2017.04.025 | es_ES |
dc.description.references | Palmqvist, S., Schöll, M., Strandberg, O., Mattsson, N., Stomrud, E., Zetterberg, H., … Hansson, O. (2017). Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nature Communications, 8(1). doi:10.1038/s41467-017-01150-x | es_ES |
dc.description.references | Pasquini, L., Scherr, M., Tahmasian, M., Myers, N. E., Ortner, M., Kurz, A., … Sorg, C. (2016). Increased Intrinsic Activity of Medial-Temporal Lobe Subregions is Associated with Decreased Cortical Thickness of Medial-Parietal Areas in Patients with Alzheimer’s Disease Dementia. Journal of Alzheimer’s Disease, 51(1), 313-326. doi:10.3233/jad-150823 | es_ES |
dc.description.references | Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183-194. doi:10.1111/j.1365-2796.2004.01388.x | es_ES |
dc.description.references | Petersen, R. C., Roberts, R. O., Knopman, D. S., Boeve, B. F., Geda, Y. E., Ivnik, R. J., … Jack, C. R. (2009). Mild Cognitive Impairment. Archives of Neurology, 66(12). doi:10.1001/archneurol.2009.266 | es_ES |
dc.description.references | Preston, A. R., Bornstein, A. M., Hutchinson, J. B., Gaare, M. E., Glover, G. H., & Wagner, A. D. (2010). High-resolution fMRI of Content-sensitive Subsequent Memory Responses in Human Medial Temporal Lobe. Journal of Cognitive Neuroscience, 22(1), 156-173. doi:10.1162/jocn.2009.21195 | es_ES |
dc.description.references | Qiu, A., Fennema-Notestine, C., Dale, A. M., & Miller, M. I. (2009). Regional shape abnormalities in mild cognitive impairment and Alzheimer’s disease. NeuroImage, 45(3), 656-661. doi:10.1016/j.neuroimage.2009.01.013 | es_ES |
dc.description.references | Wisse, L. E. M., Gerritsen, L., Zwanenburg, J. J. M., Kuijf, H. J., Luijten, P. R., Biessels, G. J., & Geerlings, M. I. (2012). Subfields of the hippocampal formation at 7T MRI: In vivo volumetric assessment. NeuroImage, 61(4), 1043-1049. doi:10.1016/j.neuroimage.2012.03.023 | es_ES |
dc.description.references | Wisse, L. E. M., Biessels, G. J., & Geerlings, M. I. (2014). A Critical Appraisal of the Hippocampal Subfield Segmentation Package in FreeSurfer. Frontiers in Aging Neuroscience, 6. doi:10.3389/fnagi.2014.00261 | es_ES |
dc.description.references | Witter, M., Van Hoesen, G., & Amaral, D. (1989). Topographical organization of the entorhinal projection to the dentate gyrus of the monkey. The Journal of Neuroscience, 9(1), 216-228. doi:10.1523/jneurosci.09-01-00216.1989 | es_ES |
dc.description.references | Wolk, D. A., & Dickerson, B. C. (2011). Fractionating verbal episodic memory in Alzheimer’s disease. NeuroImage, 54(2), 1530-1539. doi:10.1016/j.neuroimage.2010.09.005 | es_ES |
dc.description.references | Xie, L., Shinohara, R. T., Ittyerah, R., Kuijf, H. J., Pluta, J. B., Blom, K., … Wisse, L. E. M. (2018). Automated Multi-Atlas Segmentation of Hippocampal and Extrahippocampal Subregions in Alzheimer’s Disease at 3T and 7T: What Atlas Composition Works Best? Journal of Alzheimer’s Disease, 63(1), 217-225. doi:10.3233/jad-170932 | es_ES |
dc.description.references | Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage, 31(3), 1116-1128. doi:10.1016/j.neuroimage.2006.01.015 | es_ES |
dc.description.references | Zeineh, M. M., Engel, S. A., Thompson, P. M., & Bookheimer, S. Y. (2001). Unfolding the human hippocampus with high resolution structural and functional MRI. The Anatomical Record, 265(2), 111-120. doi:10.1002/ar.1061 | es_ES |