- -

Analysis of Twitter messages using big data tools to evaluate and locate the activity in the city of Valencia (Spain)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of Twitter messages using big data tools to evaluate and locate the activity in the city of Valencia (Spain)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martín Furones, Ángel Esteban es_ES
dc.contributor.author Anquela Julián, Ana Belén es_ES
dc.contributor.author Cos-Gayón López, Fernando José es_ES
dc.date.accessioned 2020-12-11T04:34:06Z
dc.date.available 2020-12-11T04:34:06Z
dc.date.issued 2019-03 es_ES
dc.identifier.issn 0264-2751 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156859
dc.description.abstract [EN] This paper presents the big data architecture and work flow used to download georeferenced tweets, store them in a NoSQL database, analyse them using the Apache Spark framework, and visualize the results. The study covers a complete year (from December 10, 2016 to December 10, 2017) in the city of Valencia (Eastern Spain), which is considered to be the third most important in Spain, having a population of nearly 800,000 inhabitants and a size of 135 km(2). The concepts of a specific event map and a specific event map with positive or negative sentiment are developed to highlight the location of an event. This approach is undertaken by subtracting the heat map of a specific day from the mean daily heat map, which is obtained by taking into account the 365 days of the studied period. This paper demonstrates how the proposed analysis from tweets can be used to depict city events and discover their spatiotemporal characteristics. Finally, the combination of all daily specific events maps in a single map, leads to the conclusion that the city of Valencia city has appropriate urban infrastructures to support these events. es_ES
dc.description.sponsorship The authors would like to thank the comments and suggestions of the anonymous reviewers and the editor, which have helped to improve the original version. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Cities es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Twitter es_ES
dc.subject Big data es_ES
dc.subject Apache Spark es_ES
dc.subject MongoDB es_ES
dc.subject Urban infrastructure es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.subject.classification CONSTRUCCIONES ARQUITECTONICAS es_ES
dc.title Analysis of Twitter messages using big data tools to evaluate and locate the activity in the city of Valencia (Spain) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cities.2018.12.014 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques es_ES
dc.description.bibliographicCitation Martín Furones, ÁE.; Anquela Julián, AB.; Cos-Gayón López, FJ. (2019). Analysis of Twitter messages using big data tools to evaluate and locate the activity in the city of Valencia (Spain). Cities. (86):37-50. https://doi.org/https://doi.org/10.1016/j.cities.2018.12.014 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion 10.1016/j.cities.2018.12.014 es_ES
dc.description.upvformatpinicio 37 es_ES
dc.description.upvformatpfin 50 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 86 es_ES
dc.relation.pasarela S\375739 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem