- -

Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide

Mostrar el registro completo del ítem

Carceller-Carceller, JM.; Martínez Galán, JP.; Monti, R.; Bassan, JC.; Filice, M.; Iborra Chornet, S.; Yu, J.... (2019). Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide. Green Chemistry. 21(4):839-849. https://doi.org/10.1039/c8gc03661f

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156865

Ficheros en el ítem

Metadatos del ítem

Título: Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide
Autor: Carceller-Carceller, Jose Miguel Martínez Galán, Julián Paul Monti, Rubens Bassan, Juliana Cristina Filice, Marco Iborra Chornet, Sara Yu, Jihong Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Production of citrus flavonoids prunin and naringenin was performed selectively through the enzyme hydrolysis of naringin, a flavonoid glycoside abundant in grapefruit wastes. To produce the monoglycoside flavonoid, ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Green Chemistry. (issn: 1463-9262 )
DOI: 10.1039/c8gc03661f
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c8gc03661f
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/NSFC//21320102001/
info:eu-repo/grantAgreement/MOE//B17020/
info:eu-repo/grantAgreement/MINECO//CTQ2015-67592-P/ES/VALORIZACION DE COMPUESTO OXIGENADOS PRESENTES EN FRACCIONES ACUOSAS DERIVADAS DE BIOMASA EN COMBUSTIBLES Y PRODUCTOS QUIMICOS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097277-B-I00/ES/MEJORA DEL CONCEPTO DE BIORREFINERIA MEDIANTE IMPLEMENTACION DE NUEVOS PROCESOS CATALITICOS CON CATALIZADORES SOLIDOS DE METALES NO NOBLES PARA LA PRODUCCION DE BIOCOMPUESTOS/
Agradecimientos:
Authors acknowledge the financial support from MICINN Project CTQ-2015-67592-P and Program Severo Ochoa (SEV-2016-0683). JVC thanks Universitat Politecnica de Valencia for predoctoral fellowships. JY and AC thank the support ...[+]
Tipo: Artículo

References

Puri, M., & Banerjee, U. C. (2000). Production, purification, and characterization of the debittering enzyme naringinase. Biotechnology Advances, 18(3), 207-217. doi:10.1016/s0734-9750(00)00034-3

Vila-Real, H., Alfaia, A. J., Rosa, M. E., Calado, A. R., & Ribeiro, M. H. L. (2010). An innovative sol–gel naringinase bioencapsulation process for glycosides hydrolysis. Process Biochemistry, 45(6), 841-850. doi:10.1016/j.procbio.2010.02.004

C. Grassin and P.Fauquembergue , in Industrial Enzymology , ed. S. West and T. Godfrey , Nature Publishing Group , New York , 2nd edn, 1996 , p. 225 [+]
Puri, M., & Banerjee, U. C. (2000). Production, purification, and characterization of the debittering enzyme naringinase. Biotechnology Advances, 18(3), 207-217. doi:10.1016/s0734-9750(00)00034-3

Vila-Real, H., Alfaia, A. J., Rosa, M. E., Calado, A. R., & Ribeiro, M. H. L. (2010). An innovative sol–gel naringinase bioencapsulation process for glycosides hydrolysis. Process Biochemistry, 45(6), 841-850. doi:10.1016/j.procbio.2010.02.004

C. Grassin and P.Fauquembergue , in Industrial Enzymology , ed. S. West and T. Godfrey , Nature Publishing Group , New York , 2nd edn, 1996 , p. 225

Tsen, H.-Y., & Tsai, S.-Y. (1988). Comparison of the kinetics and factors affecting the stabilities of chitin-immobilized naringinases from two fungal sources. Journal of Fermentation Technology, 66(2), 193-198. doi:10.1016/0385-6380(88)90047-7

SOARES, N. F. F., & HOTCHKISS, J. H. (1998). Naringinase Immobilization in Packaging Films for Reducing Naringin Concentration in Grapefruit Juice. Journal of Food Science, 63(1), 61-65. doi:10.1111/j.1365-2621.1998.tb15676.x

Puri, M., Kaur, H., & Kennedy, J. F. (2005). Covalent immobilization of naringinase for the transformation of a flavonoid. Journal of Chemical Technology & Biotechnology, 80(10), 1160-1165. doi:10.1002/jctb.1303

Norouzian, D., Hosseinzadeh, A., Inanlou, D. N., & Moazami, N. (1999). World Journal of Microbiology and Biotechnology, 15(4), 501-502. doi:10.1023/a:1008980018481

Nishita, M., Park, S.-Y., Nishio, T., Kamizaki, K., Wang, Z., Tamada, K., … Minami, Y. (2017). Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness. Scientific Reports, 7(1). doi:10.1038/s41598-016-0028-x

Zhang, Y., Wu, C., Guo, S., & Zhang, J. (2013). Interactions of graphene and graphene oxide with proteins and peptides. Nanotechnology Reviews, 2(1), 27-45. doi:10.1515/ntrev-2012-0078

Mathesh, M., Luan, B., Akanbi, T. O., Weber, J. K., Liu, J., Barrow, C. J., … Yang, W. (2016). Opening Lids: Modulation of Lipase Immobilization by Graphene Oxides. ACS Catalysis, 6(7), 4760-4768. doi:10.1021/acscatal.6b00942

Li, W., Wen, H., Shi, Q., & Zheng, G. (2016). Study on immobilization of (+) γ-lactamase using a new type of epoxy graphene oxide carrier. Process Biochemistry, 51(2), 270-276. doi:10.1016/j.procbio.2015.11.030

Hong, S.-G., Kim, J. H., Kim, R. E., Kwon, S.-J., Kim, D. W., Jung, H.-T., … Kim, J. (2016). Immobilization of glucose oxidase on graphene oxide for highly sensitive biosensors. Biotechnology and Bioprocess Engineering, 21(4), 573-579. doi:10.1007/s12257-016-0373-4

Liu, F., Piao, Y., Choi, K. S., & Seo, T. S. (2012). Fabrication of free-standing graphene composite films as electrochemical biosensors. Carbon, 50(1), 123-133. doi:10.1016/j.carbon.2011.07.061

Wang, Z., Zhou, X., Zhang, J., Boey, F., & Zhang, H. (2009). Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase. The Journal of Physical Chemistry C, 113(32), 14071-14075. doi:10.1021/jp906348x

Singh, R. K., Kumar, R., & Singh, D. P. (2016). Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Advances, 6(69), 64993-65011. doi:10.1039/c6ra07626b

Vila-Real, H., Alfaia, A. J., Bronze, M. R., Calado, A. R. T., & Ribeiro, M. H. L. (2011). Enzymatic Synthesis of the Flavone Glucosides, Prunin and Isoquercetin, and the Aglycones, Naringenin and Quercetin, with Selective α-L-Rhamnosidase and β-D-Glucosidase Activities of Naringinase. Enzyme Research, 2011, 1-11. doi:10.4061/2011/692618

Mamma, D., Kalogeris, E., Hatzinikolaou, D. G., Lekanidou, A., Kekos, D., Macris, B. J., & Christakopoulos, P. (2004). Biochemical Characterization of the Multi-enzyme System Produced byPenicillium decumbensGrown on Rutin. Food Biotechnology, 18(1), 1-18. doi:10.1081/fbt-120030382

Chang, H.-Y., Lee, Y.-B., Bae, H.-A., Huh, J.-Y., Nam, S.-H., Sohn, H.-S., … Lee, S.-B. (2011). Purification and characterisation of Aspergillus sojae naringinase: The production of prunin exhibiting markedly enhanced solubility with in vitro inhibition of HMG-CoA reductase. Food Chemistry, 124(1), 234-241. doi:10.1016/j.foodchem.2010.06.024

Yadav, S., Yadava, S., & Yadav, K. D. S. (2013). Purification and characterization of α-l-rhamnosidase from Penicillium corylopholum MTCC-2011. Process Biochemistry, 48(9), 1348-1354. doi:10.1016/j.procbio.2013.05.001

Zhu, Y., Jia, H., Xi, M., Xu, L., Wu, S., & Li, X. (2017). Purification and characterization of a naringinase from a newly isolated strain of Bacillus amyloliquefaciens 11568 suitable for the transformation of flavonoids. Food Chemistry, 214, 39-46. doi:10.1016/j.foodchem.2016.06.108

Zhang, T., Yuan, W., Li, M., Miao, M., & Mu, W. (2018). Purification and characterization of an intracellular α-l-rhamnosidase from a newly isolated strain, Alternaria alternata SK37.001. Food Chemistry, 269, 63-69. doi:10.1016/j.foodchem.2018.06.134

Vila-Real, H., Alfaia, A. J., Rosa, J. N., Gois, P. M. P., Rosa, M. E., Calado, A. R. T., & Ribeiro, M. H. (2011). α-Rhamnosidase and β-glucosidase expressed by naringinase immobilized on new ionic liquid sol–gel matrices: Activity and stability studies. Journal of Biotechnology, 152(4), 147-158. doi:10.1016/j.jbiotec.2010.08.005

Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., … Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76-85. doi:10.1016/0003-2697(85)90442-7

Erickson, H. P. (2009). Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. Biological Procedures Online, 11(1), 32-51. doi:10.1007/s12575-009-9008-x

Zhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J., & Guo, S. (2010). Graphene Oxide as a Matrix for Enzyme Immobilization. Langmuir, 26(9), 6083-6085. doi:10.1021/la904014z

Marolewski, A. (1996). Fundamentals of Enzyme Kinetics. Revised Edition By Athel Cornish-Bowden. Portland Press, London. 1995. xiii + 343 pp. 17.5 cm × 24.5 cm. ISBN 1-85578-072-0. $29.00. Journal of Medicinal Chemistry, 39(4), 1010-1011. doi:10.1021/jm9508447

Romero, C., Manjón, A., Bastida, J., & Iborra, J. (1985). A method for assaying the rhamnosidase activity of naringinase. Analytical Biochemistry, 149(2), 566-571. doi:10.1016/0003-2697(85)90614-1

Fox, D. W., Savage, W. L., & Wender, S. H. (1953). Hydrolysis of Some Flavonoid Rhamnoglucosides to Flavonoid Glucosides. Journal of the American Chemical Society, 75(10), 2504-2505. doi:10.1021/ja01106a507

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426-428. doi:10.1021/ac60147a030

LAEMMLI, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227(5259), 680-685. doi:10.1038/227680a0

Heukeshoven, J., & Dernick, R. (1985). Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis, 6(3), 103-112. doi:10.1002/elps.1150060302

Sheldon, R. A., & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev., 42(15), 6223-6235. doi:10.1039/c3cs60075k

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem