Mostrar el registro sencillo del ítem
dc.contributor.author | Iglesias-Martínez, Miguel Enrique | es_ES |
dc.contributor.author | Fernández de Córdoba, Pedro | es_ES |
dc.contributor.author | Antonino Daviu, José Alfonso | es_ES |
dc.contributor.author | Conejero, J. Alberto | es_ES |
dc.date.accessioned | 2020-12-12T04:31:37Z | |
dc.date.available | 2020-12-12T04:31:37Z | |
dc.date.issued | 2019-10 | es_ES |
dc.identifier.issn | 0093-9994 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156934 | |
dc.description | (c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | es_ES |
dc.description.abstract | [EN] In this paper, statistical signal processing techniques are applied to electromotive force signals captured in external coil sensors for adjacent and nonadjacent broken bars detection in induction motors. An algorithm based on spectral subtraction analysis is applied for broken bar identification, independent of the relative position of the bar breakages. Moreover, power spectrum analyses enable the discrimination between healthy and faulty conditions. The results obtained with experimental data prove that the proposed approach provides good results for fault detectability. Moreover, the identification of the faults, and the signal correlation indicator to prove the results are also presented for different positions of the flux sensor. | es_ES |
dc.description.sponsorship | This work was supported in part by MEC under Project MTM 2016-7963-P and in part by the Spanish 'Ministerio de Ciencia Innovacion y Universidades' and FEDER program in the framework of the 'Proyectos de I+D de Generacion de Conocimiento del Programa Estatal de Generacion de Conocimiento y Fortalecimiento Cientifico y Tecnologico del Sistema de I+D+i, Subprograma Estatal de Generacion de Conocimiento' (ref: PGC2018-095747-B-I00). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Transactions on Industry Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fault diagnosis | es_ES |
dc.subject | Induction motors | es_ES |
dc.subject | Flux | es_ES |
dc.subject | Signals | es_ES |
dc.subject | Spectral analysis | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | Detection of nonadjacent rotor faults in induction motors via spectral subtraction and autocorrelation of stray flux signals | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1109/TIA.2019.2917861 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095747-B-I00/ES/TECNOLOGIAS AVANZADAS BASADAS EN EL ANALISIS DEL FLUJO DE DISPERSION EN REGIMEN TRANSITORIO PARA EL DIAGNOSTICO PRECOZ DE ANOMALIAS ELECTROMECANICAS EN MOTORES ELECTRICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | Iglesias-Martínez, ME.; Fernández De Córdoba, P.; Antonino Daviu, JA.; Conejero, JA. (2019). Detection of nonadjacent rotor faults in induction motors via spectral subtraction and autocorrelation of stray flux signals. IEEE Transactions on Industry Applications. 55(5):4585-4594. https://doi.org/10.1109/TIA.2019.2917861 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | XXIIIrd International Conference on Electrical Machines (ICEM 2018) | es_ES |
dc.relation.conferencedate | Septiembre 03-06,2018 | es_ES |
dc.relation.conferenceplace | Alexandroupoli,Greece | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/TIA.2019.2917861 | es_ES |
dc.description.upvformatpinicio | 4585 | es_ES |
dc.description.upvformatpfin | 4594 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 55 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\387493 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |