- -

The NoisyOffice Database: A Corpus To Train Supervised Machine Learning Filters For Image Processing

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

The NoisyOffice Database: A Corpus To Train Supervised Machine Learning Filters For Image Processing

Show full item record

Castro-Bleda, MJ.; España Boquera, S.; Pastor Pellicer, J.; Zamora Martínez, FJ. (2020). The NoisyOffice Database: A Corpus To Train Supervised Machine Learning Filters For Image Processing. The Computer Journal. 63(11):1658-1667. https://doi.org/10.1093/comjnl/bxz098

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156936

Files in this item

Item Metadata

Title: The NoisyOffice Database: A Corpus To Train Supervised Machine Learning Filters For Image Processing
Author: Castro-Bleda, Maria Jose España Boquera, Salvador Pastor Pellicer, Joan ZAMORA MARTÍNEZ, FRANCISCO JULIÁN
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
[EN] This paper presents the `NoisyOffice¿ database. It consists of images of printed text documents with noise mainly caused by uncleanliness from a generic office, such as coffee stains and footprints on documents or ...[+]
Subjects: Optical character recognition , Image processing , Binarization , Denoising , Super resolution , Machine learning , Neural networks , Deep learning
Copyrigths: Reserva de todos los derechos
Source:
The Computer Journal. (issn: 0010-4620 )
DOI: 10.1093/comjnl/bxz098
Publisher:
Oxford University Press
Publisher version: https://doi.org/10.1093/comjnl/bxz098
Project ID:
MINECO/TIN2017-85854-C4-2-R
Thanks:
This research was undertaken as part of the project TIN2017-85854-C4-2-R, jointly funded by the Spanish MINECO and FEDER founds.
Type: Artículo

This item appears in the following Collection(s)

Show full item record