- -

Influence of Fe Content in Binary SnS2 Synthesis by Hydrothermal Technique for Photovoltaic Application

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of Fe Content in Binary SnS2 Synthesis by Hydrothermal Technique for Photovoltaic Application

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ullah, Shafi es_ES
dc.contributor.author Bouich, Amal es_ES
dc.contributor.author Ullah, Hanif es_ES
dc.contributor.author Vega-Fleitas, Erica es_ES
dc.contributor.author Baig, Faisal es_ES
dc.contributor.author Hameed, Yousaf es_ES
dc.contributor.author Mollar García, Miguel Alfonso es_ES
dc.contributor.author Marí, B. es_ES
dc.date.accessioned 2020-12-15T04:31:55Z
dc.date.available 2020-12-15T04:31:55Z
dc.date.issued 2019-06-18 es_ES
dc.identifier.issn 0013-4651 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157196
dc.description.abstract [EN] Binary thin disulfide (SnS2) and ternary Sn1-x FexS2 (X = Fe (2.5%, 5% and 10%) which has huge potentials in the visible-light rang due to its bandgap 2.2-2.6 eV. Herein, SnS2 and Sn1-x FexS2 powders have been synthesize by a fruitful hydrothermal method. The structure, morphology, elemental composition and optical properties of the obtained product were characterized by using X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Electron Dispersive Spectroscopy (EDS) and UV-Vis spectroscopy. It was found that the Fe could be effectively incorporated in the obtained Sn(1-x)FexS(2) compounds. According to XRD analysis, increased concentration of Fe in the Sn1-xFexS2 compounds results in a gradual degradation of the crystallinity. The optical bandgap was found to be 1.52 eV, 2.22 eV, 2.38 eV and 2.48 eV, for the SnS, SnS2, Fe 5% and Fe 10% respectively. Mott-Schottky measurements performed for SnS2 confirm the n-type character of SnS2 samples. (c) 2019 The Electrochemical Society. es_ES
dc.description.sponsorship This work was supported by Ministerio de Economia y Competitividad (ENE2016-77798-C4-2-R). es_ES
dc.language Inglés es_ES
dc.publisher The Electrochemical Society es_ES
dc.relation.ispartof Journal of The Electrochemical Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Thin-Films es_ES
dc.subject Buffer layers es_ES
dc.subject Deposition es_ES
dc.subject Performance es_ES
dc.subject Nanosheets es_ES
dc.subject Growth es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Influence of Fe Content in Binary SnS2 Synthesis by Hydrothermal Technique for Photovoltaic Application es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1149/2.0251906jss es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2016-77798-C4-2-R/ES/APROVECHAMIENTO DE LA LUZ SOLAR CON PROCESOS DE DOS FOTONES-TF/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ullah, S.; Bouich, A.; Ullah, H.; Vega-Fleitas, E.; Baig, F.; Hameed, Y.; Mollar García, MA.... (2019). Influence of Fe Content in Binary SnS2 Synthesis by Hydrothermal Technique for Photovoltaic Application. Journal of The Electrochemical Society. 8(6):Q118-Q122. https://doi.org/10.1149/2.0251906jss es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1149/2.0251906jss es_ES
dc.description.upvformatpinicio Q118 es_ES
dc.description.upvformatpfin Q122 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\389793 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Zhang, Y. C., Du, Z. N., Li, K. W., & Zhang, M. (2011). Size-controlled hydrothermal synthesis of SnS2 nanoparticles with high performance in visible light-driven photocatalytic degradation of aqueous methyl orange. Separation and Purification Technology, 81(1), 101-107. doi:10.1016/j.seppur.2011.07.016 es_ES
dc.description.references Gedi, S., Minnam Reddy, V. R., Pejjai, B., Park, C., Jeon, C.-W., & Kotte, T. R. R. (2017). Studies on chemical bath deposited SnS 2 films for Cd-free thin film solar cells. Ceramics International, 43(4), 3713-3719. doi:10.1016/j.ceramint.2016.11.219 es_ES
dc.description.references Ohtake, Y., Okamoto, T., Yamada, A., Konagai, M., & Saito, K. (1997). Improved performance of Cu(InGa)Se2 thin-film solar cells using evaporated Cd-free buffer layers. Solar Energy Materials and Solar Cells, 49(1-4), 269-275. doi:10.1016/s0927-0248(97)00203-1 es_ES
dc.description.references Nakada, T., & Mizutani, M. (2002). 18% Efficiency Cd-Free Cu(In, Ga)Se2 Thin-Film Solar Cells Fabricated Using Chemical Bath Deposition (CBD)-ZnS Buffer Layers. Japanese Journal of Applied Physics, 41(Part 2, No. 2B), L165-L167. doi:10.1143/jjap.41.l165 es_ES
dc.description.references Naghavi, N., Spiering, S., Powalla, M., Cavana, B., & Lincot, D. (2003). High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD). Progress in Photovoltaics: Research and Applications, 11(7), 437-443. doi:10.1002/pip.508 es_ES
dc.description.references Yousfi, E. B., Asikainen, T., Pietu, V., Cowache, P., Powalla, M., & Lincot, D. (2000). Cadmium-free buffer layers deposited by atomic later epitaxy for copper indium diselenide solar cells. Thin Solid Films, 361-362, 183-186. doi:10.1016/s0040-6090(99)00860-3 es_ES
dc.description.references EISELE, W., ENNAOUI, A., SCHUBERTBISCHOFF, P., GIERSIG, M., PETTENKOFER, C., KRAUSER, J., … KARG, F. (2003). XPS, TEM and NRA investigations of Zn(Se,OH)/Zn(OH) films on Cu(In,Ga)(S,Se) substrates for highly efficient solar cells. Solar Energy Materials and Solar Cells, 75(1-2), 17-26. doi:10.1016/s0927-0248(02)00104-6 es_ES
dc.description.references Kim, J. H., Shin, D. H., Kwon, H. S., & Ahn, B. T. (2014). Growth of Sn(O,S)2 buffer layers and its application to Cu(In,Ga)Se2 solar cells. Current Applied Physics, 14(12), 1803-1808. doi:10.1016/j.cap.2014.10.008 es_ES
dc.description.references Amalraj, L., Sanjeeviraja, C., & Jayachandran, M. (2002). Spray pyrolysised tin disulphide thin film and characterisation. Journal of Crystal Growth, 234(4), 683-689. doi:10.1016/s0022-0248(01)01756-0 es_ES
dc.description.references Manohari, A. G., Santhosh Kumar, K., Lou, C., Mahalingam, T., & Manoharan, C. (2015). Buffer layer of antimony doped tin disulphide thin films for heterojunction solar cells. Materials Letters, 155, 121-124. doi:10.1016/j.matlet.2015.04.114 es_ES
dc.description.references Sharp, L., Soltz, D., & Parkinson, B. A. (2006). Growth and Characterization of Tin Disulfide Single Crystals. Crystal Growth & Design, 6(6), 1523-1527. doi:10.1021/cg050335y es_ES
dc.description.references Thangaraju, B., & Kaliannan, P. (2000). Spray pyrolytic deposition and characterization of SnS and SnS2thin films. Journal of Physics D: Applied Physics, 33(9), 1054-1059. doi:10.1088/0022-3727/33/9/304 es_ES
dc.description.references Reddy, K. T. R., Sreedevi, G., Ramya, K., & Miles, R. W. (2012). Physical Properties of Nano-crystalline SnS2 Layers Grown by Chemical Bath Deposition. Energy Procedia, 15, 340-346. doi:10.1016/j.egypro.2012.02.041 es_ES
dc.description.references Fattah-alhosseini, A., & Vafaeian, S. (2015). Comparison of electrochemical behavior between coarse-grained and fine-grained AISI 430 ferritic stainless steel by Mott–Schottky analysis and EIS measurements. Journal of Alloys and Compounds, 639, 301-307. doi:10.1016/j.jallcom.2015.03.142 es_ES
dc.description.references Cifuentes, C., Botero, M., Romero, E., Calderón, C., & Gordillo, G. (2006). Optical and structural studies on SnS films grown by co-evaporation. Brazilian Journal of Physics, 36(3b), 1046-1049. doi:10.1590/s0103-97332006000600066 es_ES
dc.description.references Preethi, L. K., Mathews, T., Nand, M., Jha, S. N., Gopinath, C. S., & Dash, S. (2017). Band alignment and charge transfer pathway in three phase anatase-rutile-brookite TiO2 nanotubes: An efficient photocatalyst for water splitting. Applied Catalysis B: Environmental, 218, 9-19. doi:10.1016/j.apcatb.2017.06.033 es_ES
dc.description.references Xiang, P., Li, X., Wang, H., Liu, G., Shu, T., Zhou, Z., … Han, H. (2011). Mesoporous nitrogen-doped TiO2 sphere applied for quasi-solid-state dye-sensitized solar cell. Nanoscale Research Letters, 6(1), 606. doi:10.1186/1556-276x-6-606 es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem