Mostrar el registro sencillo del ítem
dc.contributor.author | Ullah, Shafi | es_ES |
dc.contributor.author | Bouich, Amal | es_ES |
dc.contributor.author | Ullah, Hanif | es_ES |
dc.contributor.author | Vega-Fleitas, Erica | es_ES |
dc.contributor.author | Baig, Faisal | es_ES |
dc.contributor.author | Hameed, Yousaf | es_ES |
dc.contributor.author | Mollar García, Miguel Alfonso | es_ES |
dc.contributor.author | Marí, B. | es_ES |
dc.date.accessioned | 2020-12-15T04:31:55Z | |
dc.date.available | 2020-12-15T04:31:55Z | |
dc.date.issued | 2019-06-18 | es_ES |
dc.identifier.issn | 0013-4651 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157196 | |
dc.description.abstract | [EN] Binary thin disulfide (SnS2) and ternary Sn1-x FexS2 (X = Fe (2.5%, 5% and 10%) which has huge potentials in the visible-light rang due to its bandgap 2.2-2.6 eV. Herein, SnS2 and Sn1-x FexS2 powders have been synthesize by a fruitful hydrothermal method. The structure, morphology, elemental composition and optical properties of the obtained product were characterized by using X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Electron Dispersive Spectroscopy (EDS) and UV-Vis spectroscopy. It was found that the Fe could be effectively incorporated in the obtained Sn(1-x)FexS(2) compounds. According to XRD analysis, increased concentration of Fe in the Sn1-xFexS2 compounds results in a gradual degradation of the crystallinity. The optical bandgap was found to be 1.52 eV, 2.22 eV, 2.38 eV and 2.48 eV, for the SnS, SnS2, Fe 5% and Fe 10% respectively. Mott-Schottky measurements performed for SnS2 confirm the n-type character of SnS2 samples. (c) 2019 The Electrochemical Society. | es_ES |
dc.description.sponsorship | This work was supported by Ministerio de Economia y Competitividad (ENE2016-77798-C4-2-R). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Electrochemical Society | es_ES |
dc.relation.ispartof | Journal of The Electrochemical Society | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Thin-Films | es_ES |
dc.subject | Buffer layers | es_ES |
dc.subject | Deposition | es_ES |
dc.subject | Performance | es_ES |
dc.subject | Nanosheets | es_ES |
dc.subject | Growth | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Influence of Fe Content in Binary SnS2 Synthesis by Hydrothermal Technique for Photovoltaic Application | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1149/2.0251906jss | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2016-77798-C4-2-R/ES/APROVECHAMIENTO DE LA LUZ SOLAR CON PROCESOS DE DOS FOTONES-TF/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Ullah, S.; Bouich, A.; Ullah, H.; Vega-Fleitas, E.; Baig, F.; Hameed, Y.; Mollar García, MA.... (2019). Influence of Fe Content in Binary SnS2 Synthesis by Hydrothermal Technique for Photovoltaic Application. Journal of The Electrochemical Society. 8(6):Q118-Q122. https://doi.org/10.1149/2.0251906jss | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1149/2.0251906jss | es_ES |
dc.description.upvformatpinicio | Q118 | es_ES |
dc.description.upvformatpfin | Q122 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\389793 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Zhang, Y. C., Du, Z. N., Li, K. W., & Zhang, M. (2011). Size-controlled hydrothermal synthesis of SnS2 nanoparticles with high performance in visible light-driven photocatalytic degradation of aqueous methyl orange. Separation and Purification Technology, 81(1), 101-107. doi:10.1016/j.seppur.2011.07.016 | es_ES |
dc.description.references | Gedi, S., Minnam Reddy, V. R., Pejjai, B., Park, C., Jeon, C.-W., & Kotte, T. R. R. (2017). Studies on chemical bath deposited SnS 2 films for Cd-free thin film solar cells. Ceramics International, 43(4), 3713-3719. doi:10.1016/j.ceramint.2016.11.219 | es_ES |
dc.description.references | Ohtake, Y., Okamoto, T., Yamada, A., Konagai, M., & Saito, K. (1997). Improved performance of Cu(InGa)Se2 thin-film solar cells using evaporated Cd-free buffer layers. Solar Energy Materials and Solar Cells, 49(1-4), 269-275. doi:10.1016/s0927-0248(97)00203-1 | es_ES |
dc.description.references | Nakada, T., & Mizutani, M. (2002). 18% Efficiency Cd-Free Cu(In, Ga)Se2 Thin-Film Solar Cells Fabricated Using Chemical Bath Deposition (CBD)-ZnS Buffer Layers. Japanese Journal of Applied Physics, 41(Part 2, No. 2B), L165-L167. doi:10.1143/jjap.41.l165 | es_ES |
dc.description.references | Naghavi, N., Spiering, S., Powalla, M., Cavana, B., & Lincot, D. (2003). High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD). Progress in Photovoltaics: Research and Applications, 11(7), 437-443. doi:10.1002/pip.508 | es_ES |
dc.description.references | Yousfi, E. B., Asikainen, T., Pietu, V., Cowache, P., Powalla, M., & Lincot, D. (2000). Cadmium-free buffer layers deposited by atomic later epitaxy for copper indium diselenide solar cells. Thin Solid Films, 361-362, 183-186. doi:10.1016/s0040-6090(99)00860-3 | es_ES |
dc.description.references | EISELE, W., ENNAOUI, A., SCHUBERTBISCHOFF, P., GIERSIG, M., PETTENKOFER, C., KRAUSER, J., … KARG, F. (2003). XPS, TEM and NRA investigations of Zn(Se,OH)/Zn(OH) films on Cu(In,Ga)(S,Se) substrates for highly efficient solar cells. Solar Energy Materials and Solar Cells, 75(1-2), 17-26. doi:10.1016/s0927-0248(02)00104-6 | es_ES |
dc.description.references | Kim, J. H., Shin, D. H., Kwon, H. S., & Ahn, B. T. (2014). Growth of Sn(O,S)2 buffer layers and its application to Cu(In,Ga)Se2 solar cells. Current Applied Physics, 14(12), 1803-1808. doi:10.1016/j.cap.2014.10.008 | es_ES |
dc.description.references | Amalraj, L., Sanjeeviraja, C., & Jayachandran, M. (2002). Spray pyrolysised tin disulphide thin film and characterisation. Journal of Crystal Growth, 234(4), 683-689. doi:10.1016/s0022-0248(01)01756-0 | es_ES |
dc.description.references | Manohari, A. G., Santhosh Kumar, K., Lou, C., Mahalingam, T., & Manoharan, C. (2015). Buffer layer of antimony doped tin disulphide thin films for heterojunction solar cells. Materials Letters, 155, 121-124. doi:10.1016/j.matlet.2015.04.114 | es_ES |
dc.description.references | Sharp, L., Soltz, D., & Parkinson, B. A. (2006). Growth and Characterization of Tin Disulfide Single Crystals. Crystal Growth & Design, 6(6), 1523-1527. doi:10.1021/cg050335y | es_ES |
dc.description.references | Thangaraju, B., & Kaliannan, P. (2000). Spray pyrolytic deposition and characterization of SnS and SnS2thin films. Journal of Physics D: Applied Physics, 33(9), 1054-1059. doi:10.1088/0022-3727/33/9/304 | es_ES |
dc.description.references | Reddy, K. T. R., Sreedevi, G., Ramya, K., & Miles, R. W. (2012). Physical Properties of Nano-crystalline SnS2 Layers Grown by Chemical Bath Deposition. Energy Procedia, 15, 340-346. doi:10.1016/j.egypro.2012.02.041 | es_ES |
dc.description.references | Fattah-alhosseini, A., & Vafaeian, S. (2015). Comparison of electrochemical behavior between coarse-grained and fine-grained AISI 430 ferritic stainless steel by Mott–Schottky analysis and EIS measurements. Journal of Alloys and Compounds, 639, 301-307. doi:10.1016/j.jallcom.2015.03.142 | es_ES |
dc.description.references | Cifuentes, C., Botero, M., Romero, E., Calderón, C., & Gordillo, G. (2006). Optical and structural studies on SnS films grown by co-evaporation. Brazilian Journal of Physics, 36(3b), 1046-1049. doi:10.1590/s0103-97332006000600066 | es_ES |
dc.description.references | Preethi, L. K., Mathews, T., Nand, M., Jha, S. N., Gopinath, C. S., & Dash, S. (2017). Band alignment and charge transfer pathway in three phase anatase-rutile-brookite TiO2 nanotubes: An efficient photocatalyst for water splitting. Applied Catalysis B: Environmental, 218, 9-19. doi:10.1016/j.apcatb.2017.06.033 | es_ES |
dc.description.references | Xiang, P., Li, X., Wang, H., Liu, G., Shu, T., Zhou, Z., … Han, H. (2011). Mesoporous nitrogen-doped TiO2 sphere applied for quasi-solid-state dye-sensitized solar cell. Nanoscale Research Letters, 6(1), 606. doi:10.1186/1556-276x-6-606 | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |