Mostrar el registro sencillo del ítem
dc.contributor.author | Vraka, Aikaterini | es_ES |
dc.contributor.author | Hornero, Fernando | es_ES |
dc.contributor.author | Bertomeu-Gonzalez, Vicente | es_ES |
dc.contributor.author | Osca, Joaquin | es_ES |
dc.contributor.author | Alcaraz, Raul | es_ES |
dc.contributor.author | Rieta, J J | es_ES |
dc.date.accessioned | 2020-12-17T04:32:30Z | |
dc.date.available | 2020-12-17T04:32:30Z | |
dc.date.issued | 2020-02-19 | es_ES |
dc.identifier.issn | 1099-4300 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157275 | |
dc.description.abstract | [EN] Atrial ¿brillation (AF) is currently the most common cardiac arrhythmia, with catheter ablation (CA) of the pulmonary veins (PV) being its ¿rst line therapy. Ablation of complex fractionated atrial electrograms (CFAEs) outside the PVs has demonstrated improved long-term results, but their identi¿cation requires a reliable electrogram (EGM) fractionation estimator. This study proposes a technique aimed to assist CA procedures under real-time settings. The method has been tested on three groups of recordings: Group 1 consisted of 24 highly representative EGMs, eight of each belonging to a different AF Type. Group 2 contained the entire dataset of 119 EGMs, whereas Group 3 contained 20 pseudo-real EGMs of the special Type IV AF. Coarse-grained correlation dimension (CGCD) was computed at epochs of 1 s duration, obtaining a classi¿cation accuracy of 100% in Group 1 and 84.0¿85.7% in Group 2, using 10-fold cross-validation. The receiver operating characteristics (ROC) analysis for highly fractionated EGMs, showed 100% speci¿city and sensitivity in Group 1 and 87.5% speci¿city and 93.6% sensitivity in Group 2. In addition, 100% of the pseudo-real EGMs were correctly identi¿ed as Type IV AF. This method can consistently express the fractionation level of AF EGMs and provides better performance than previous works. Its ability to compute fractionation in short-time can agilely detect sudden changes of AF Types and could be used for mapping the atrial substrate, thus assisting CA procedures under real-time settings for atrial substrate modi¿cation. | es_ES |
dc.description.sponsorship | This research has been supported by grants DPI2017-83952-C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501/000411 from JCCM and AICO/2019/036 from GVA. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Entropy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Atrial fibrillation | es_ES |
dc.subject | Catheter ablation | es_ES |
dc.subject | Signal processing | es_ES |
dc.subject | Chaos theory | es_ES |
dc.subject | Coarse-grained correlation dimension | es_ES |
dc.subject | Complex fractionated atrial electrograms | es_ES |
dc.subject | Nonlinear analysis | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Short-Time Estimation of Fractionation in Atrial Fibrillation with Coarse-Grained Correlation Dimension for Mapping the Atrial Substrate | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/e22020232 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000411/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F055/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Vraka, A.; Hornero, F.; Bertomeu-Gonzalez, V.; Osca, J.; Alcaraz, R.; Rieta, JJ. (2020). Short-Time Estimation of Fractionation in Atrial Fibrillation with Coarse-Grained Correlation Dimension for Mapping the Atrial Substrate. Entropy. 22(2):1-20. https://doi.org/10.3390/e22020232 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/e22020232 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.pmid | 33286006 | es_ES |
dc.identifier.pmcid | PMC7516661 | es_ES |
dc.relation.pasarela | S\411842 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Consejería de Educación, Cultura y Deportes, Junta de Comunidades de Castilla-La Mancha | es_ES |
dc.description.references | Go, A. S., Hylek, E. M., Phillips, K. A., Chang, Y., Henault, L. E., Selby, J. V., & Singer, D. E. (2001). Prevalence of Diagnosed Atrial Fibrillation in Adults. JAMA, 285(18), 2370. doi:10.1001/jama.285.18.2370 | es_ES |
dc.description.references | Goette, A., Honeycutt, C., & Langberg, J. J. (1996). Electrical Remodeling in Atrial Fibrillation. Circulation, 94(11), 2968-2974. doi:10.1161/01.cir.94.11.2968 | es_ES |
dc.description.references | Chugh, S. S., Roth, G. A., Gillum, R. F., & Mensah, G. A. (2014). Global Burden of Atrial Fibrillation in Developed and Developing Nations. Global Heart, 9(1), 113. doi:10.1016/j.gheart.2014.01.004 | es_ES |
dc.description.references | Cappato, R., Calkins, H., Chen, S.-A., Davies, W., Iesaka, Y., Kalman, J., … Biganzoli, E. (2010). Updated Worldwide Survey on the Methods, Efficacy, and Safety of Catheter Ablation for Human Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 3(1), 32-38. doi:10.1161/circep.109.859116 | es_ES |
dc.description.references | Cox, J. L., Canavan, T. E., Schuessler, R. B., Cain, M. E., Lindsay, B. D., Stone, C., … Boineau, J. P. (1991). The surgical treatment of atrial fibrillation. The Journal of Thoracic and Cardiovascular Surgery, 101(3), 406-426. doi:10.1016/s0022-5223(19)36723-6 | es_ES |
dc.description.references | Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., … Clémenty, J. (1998). Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339(10), 659-666. doi:10.1056/nejm199809033391003 | es_ES |
dc.description.references | Kornej, J., Schumacher, K., Zeynalova, S., Sommer, P., Arya, A., Weiß, M., … Hindricks, G. (2019). Time-dependent prediction of arrhythmia recurrences during long-term follow-up in patients undergoing catheter ablation of atrial fibrillation: The Leipzig Heart Center AF Ablation Registry. Scientific Reports, 9(1). doi:10.1038/s41598-019-43644-2 | es_ES |
dc.description.references | YOSHIDA, K., ULFARSSON, M., TADA, H., CHUGH, A., GOOD, E., KUHNE, M., … ORAL, H. (2008). Complex Electrograms Within the Coronary Sinus: Time- and Frequency-Domain Characteristics, Effects of Antral Pulmonary Vein Isolation, and Relationship to Clinical Outcome in Patients with Paroxysmal and Persistent Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 19(10), 1017-1023. doi:10.1111/j.1540-8167.2008.01175.x | es_ES |
dc.description.references | Konings, K. T., Kirchhof, C. J., Smeets, J. R., Wellens, H. J., Penn, O. C., & Allessie, M. A. (1994). High-density mapping of electrically induced atrial fibrillation in humans. Circulation, 89(4), 1665-1680. doi:10.1161/01.cir.89.4.1665 | es_ES |
dc.description.references | Rolf, S., Kircher, S., Arya, A., Eitel, C., Sommer, P., Richter, S., … Piorkowski, C. (2014). Tailored Atrial Substrate Modification Based on Low-Voltage Areas in Catheter Ablation of Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 7(5), 825-833. doi:10.1161/circep.113.001251 | es_ES |
dc.description.references | Takahashi, Y., O’Neill, M. D., Hocini, M., Dubois, R., Matsuo, S., Knecht, S., … Haïssaguerre, M. (2008). Characterization of Electrograms Associated With Termination of Chronic Atrial Fibrillation by Catheter Ablation. Journal of the American College of Cardiology, 51(10), 1003-1010. doi:10.1016/j.jacc.2007.10.056 | es_ES |
dc.description.references | Atienza, F., Almendral, J., Jalife, J., Zlochiver, S., Ploutz-Snyder, R., Torrecilla, E. G., … Berenfeld, O. (2009). Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 6(1), 33-40. doi:10.1016/j.hrthm.2008.10.024 | es_ES |
dc.description.references | Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., … Ngarmukos, T. (2004). A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43(11), 2044-2053. doi:10.1016/j.jacc.2003.12.054 | es_ES |
dc.description.references | Ciaccio, E. J., Biviano, A. B., Whang, W., Coromilas, J., & Garan, H. (2011). A new transform for the analysis of complex fractionated atrial electrograms. BioMedical Engineering OnLine, 10(1), 35. doi:10.1186/1475-925x-10-35 | es_ES |
dc.description.references | Ciaccio, E. J., Biviano, A. B., & Garan, H. (2013). Computational method for high resolution spectral analysis of fractionated atrial electrograms. Computers in Biology and Medicine, 43(10), 1573-1582. doi:10.1016/j.compbiomed.2013.07.033 | es_ES |
dc.description.references | TSAI, W.-C., LIN, Y.-J., TSAO, H.-M., CHANG, S.-L., LO, L.-W., HU, Y.-F., … CHEN, S.-A. (2010). The Optimal Automatic Algorithm for the Mapping of Complex Fractionated Atrial Electrograms in Patients With Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 21(1), 21-26. doi:10.1111/j.1540-8167.2009.01567.x | es_ES |
dc.description.references | Teh, A. W., Kistler, P. M., Lee, G., Medi, C., Heck, P. M., Spence, S. J., … Kalman, J. M. (2011). The relationship between complex fractionated electrograms and atrial low-voltage zones during atrial fibrillation and paced rhythm. Europace, 13(12), 1709-1716. doi:10.1093/europace/eur197 | es_ES |
dc.description.references | Lin, Y.-J., Lo, M.-T., Chang, S.-L., Lo, L.-W., Hu, Y.-F., Chao, T.-F., … Chen, S.-A. (2016). Benefits of Atrial Substrate Modification Guided by Electrogram Similarity and Phase Mapping Techniques to Eliminate Rotors and Focal Sources Versus Conventional Defragmentation in Persistent Atrial Fibrillation. JACC: Clinical Electrophysiology, 2(6), 667-678. doi:10.1016/j.jacep.2016.08.005 | es_ES |
dc.description.references | Verma, A., Jiang, C., Betts, T. R., Chen, J., Deisenhofer, I., Mantovan, R., … Sanders, P. (2015). Approaches to Catheter Ablation for Persistent Atrial Fibrillation. New England Journal of Medicine, 372(19), 1812-1822. doi:10.1056/nejmoa1408288 | es_ES |
dc.description.references | Ammar-Busch, S., Reents, T., Knecht, S., Rostock, T., Arentz, T., Duytschaever, M., … Deisenhofer, I. (2018). Correlation between atrial fibrillation driver locations and complex fractionated atrial electrograms in patients with persistent atrial fibrillation. Pacing and Clinical Electrophysiology, 41(10), 1279-1285. doi:10.1111/pace.13483 | es_ES |
dc.description.references | Almeida, T. P., Chu, G. S., Salinet, J. L., Vanheusden, F. J., Li, X., Tuan, J. H., … Schlindwein, F. S. (2016). Minimizing discordances in automated classification of fractionated electrograms in human persistent atrial fibrillation. Medical & Biological Engineering & Computing, 54(11), 1695-1706. doi:10.1007/s11517-016-1456-2 | es_ES |
dc.description.references | De Bakker, J. M. T., & Wittkampf, F. H. M. (2010). The Pathophysiologic Basis of Fractionated and Complex Electrograms and the Impact of Recording Techniques on Their Detection and Interpretation. Circulation: Arrhythmia and Electrophysiology, 3(2), 204-213. doi:10.1161/circep.109.904763 | es_ES |
dc.description.references | Luca, A., Buttu, A., Pruvot, E., Pascale, P., Bisch, L., & Vesin, J.-M. (2016). Nonlinear analysis of right atrial electrograms predicts termination of persistent atrial fibrillation within the left atrium by catheter ablation. Physiological Measurement, 37(3), 347-359. doi:10.1088/0967-3334/37/3/347 | es_ES |
dc.description.references | Corana, A., Casaleggio, A., Rolando, C., & Ridella, S. (1991). Efficient computation of the correlation dimension from a time series on a LIW computer. Parallel Computing, 17(6-7), 809-820. doi:10.1016/s0167-8191(05)80068-7 | es_ES |
dc.description.references | Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual information. Physical Review A, 33(2), 1134-1140. doi:10.1103/physreva.33.1134 | es_ES |
dc.description.references | Martínez-Iniesta, M., Ródenas, J., Alcaraz, R., & Rieta, J. J. (2017). Waveform Integrity in Atrial Fibrillation: The Forgotten Issue of Cardiac Electrophysiology. Annals of Biomedical Engineering, 45(8), 1890-1907. doi:10.1007/s10439-017-1832-6 | es_ES |
dc.description.references | Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., & Doyne Farmer, J. (1992). Testing for nonlinearity in time series: the method of surrogate data. Physica D: Nonlinear Phenomena, 58(1-4), 77-94. doi:10.1016/0167-2789(92)90102-s | es_ES |
dc.description.references | Nakamura, T., Small, M., & Hirata, Y. (2006). Testing for nonlinearity in irregular fluctuations with long-term trends. Physical Review E, 74(2). doi:10.1103/physreve.74.026205 | es_ES |
dc.description.references | SHAPIRO, S. S., & WILK, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3-4), 591-611. doi:10.1093/biomet/52.3-4.591 | es_ES |
dc.description.references | Mandelbrot, B. (1961). Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (Ingram Olkin, Sudhist G. Ghurye, Wassily Hoeffding, William G. Madow, and Henry B. Mann, eds.). SIAM Review, 3(1), 80-80. doi:10.1137/1003016 | es_ES |
dc.description.references | Mann, H. B., & Whitney, D. R. (1947). On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. The Annals of Mathematical Statistics, 18(1), 50-60. doi:10.1214/aoms/1177730491 | es_ES |
dc.description.references | Křemen, V., Lhotská, L., Macaš, M., Čihák, R., Vančura, V., Kautzner, J., & Wichterle, D. (2008). A new approach to automated assessment of fractionation of endocardial electrograms during atrial fibrillation. Physiological Measurement, 29(12), 1371-1381. doi:10.1088/0967-3334/29/12/002 | es_ES |
dc.description.references | Haley, C. L., Gula, L. J., Miranda, R., Michael, K. A., Baranchuk, A. M., Simpson, C. S., … Redfearn, D. P. (2012). Validation of a novel algorithm for quantification of the percentage of signal fractionation in atrial fibrillation. EP Europace, 15(3), 447-452. doi:10.1093/europace/eus361 | es_ES |
dc.description.references | Nollo, G., Marconcini, M., Faes, L., Bovolo, F., Ravelli, F., & Bruzzone, L. (2008). An Automatic System for the Analysis and Classification of Human Atrial Fibrillation Patterns from Intracardiac Electrograms. IEEE Transactions on Biomedical Engineering, 55(9), 2275-2285. doi:10.1109/tbme.2008.923155 | es_ES |
dc.description.references | Kirchner, M., Faes, L., Olivetti, E., Riccardi, R., Scaglione, M., Gaita, F., & Antolini, R. (s. f.). Local electrical characterisation of human atrial fibrillation. Computers in Cardiology 2000. Vol.27 (Cat. 00CH37163). doi:10.1109/cic.2000.898567 | es_ES |
dc.description.references | Cirugeda–Roldán, E., Novak, D., Kremen, V., Cuesta–Frau, D., Keller, M., Luik, A., & Srutova, M. (2015). Characterization of Complex Fractionated Atrial Electrograms by Sample Entropy: An International Multi-Center Study. Entropy, 17(12), 7493-7509. doi:10.3390/e17117493 | es_ES |
dc.description.references | Corino, V. D. A., Rivolta, M. W., Sassi, R., Lombardi, F., & Mainardi, L. T. (2013). Ventricular activity cancellation in electrograms during atrial fibrillation with constraints on residuals’ power. Medical Engineering & Physics, 35(12), 1770-1777. doi:10.1016/j.medengphy.2013.07.010 | es_ES |
dc.description.references | Rieta, J. J., Hornero, F., Alcaraz, R., & Moratal, D. (2007). Ventricular Artifacts Cancellation from Atrial Epicardial Recordings in Atrial Tachyarrhythmias. 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2007.4353849 | es_ES |
dc.description.references | Williams, G. (1997). Chaos Theory Tamed. doi:10.1201/9781482295412 | es_ES |
dc.description.references | Havstad, J. W., & Ehlers, C. L. (1989). Attractor dimension of nonstationary dynamical systems from small data sets. Physical Review A, 39(2), 845-853. doi:10.1103/physreva.39.845 | es_ES |