- -

The spectrum of Volterra operators on Korenblum type spaces of analytic functions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

The spectrum of Volterra operators on Korenblum type spaces of analytic functions

Show simple item record

Files in this item

dc.contributor.author Bonet Solves, José Antonio es_ES
dc.date.accessioned 2020-12-17T04:33:17Z
dc.date.available 2020-12-17T04:33:17Z
dc.date.issued 2019-10 es_ES
dc.identifier.issn 0378-620X es_ES
dc.identifier.uri http://hdl.handle.net/10251/157290
dc.description.abstract [EN] The continuity, compactness and the spectrum of the Volterra integral operator V-g with symbol an analytic function g, when acting on the classical Korenblum space and other related weighted Frechet or (LB) spaces of analytic functions on the open unit disc, are investigated. es_ES
dc.description.sponsorship This research was partially supported by the Projects MTM2016-76647-P and GV Prometeo/2017/102. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation AGENCIA ESTATAL DE INVESTIGACION/MTM2016-76647-P es_ES
dc.relation GENERALITAT VALENCIANA/PROMETEO/2017/102 es_ES
dc.relation.ispartof Integral Equations and Operator Theory es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Spectrum es_ES
dc.subject Integral operator es_ES
dc.subject Volterra operator es_ES
dc.subject Analytic functions es_ES
dc.subject Growth Banach spaces es_ES
dc.subject Korenblum space es_ES
dc.subject Frechet spaces es_ES
dc.subject (LB)-spaces es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title The spectrum of Volterra operators on Korenblum type spaces of analytic functions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00020-019-2547-x es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bonet Solves, JA. (2019). The spectrum of Volterra operators on Korenblum type spaces of analytic functions. Integral Equations and Operator Theory. 91(5):1-16. https://doi.org/10.1007/s00020-019-2547-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00020-019-2547-x es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 91 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\404834 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.relation.references Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in growth Banach spaces of analytic functions. Integral Equ. Oper. Theory 86, 97–112 (2016) es_ES
dc.relation.references Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator on Korenblum type spaces of analytic functions. Collect. Math. 69, 263–281 (2018) es_ES
dc.relation.references Aleman, A., Constantin, O.: Spectra of integration operators on weighted Bergman spaces. J. Anal. Math. 109, 199–231 (2009) es_ES
dc.relation.references Aleman, A., Peláez, J.A.: Spectra of integration operators and weighted square functions. Indiana Univ. Math. J. 61, 1–19 (2012) es_ES
dc.relation.references Aleman, A., Persson, A.-M.: Resolvent estimates and decomposable extensions of generalized Cesàro operators. J. Funct. Anal. 258, 67–98 (2010) es_ES
dc.relation.references Aleman, A., Siskakis, A.G.: An integral operator on $$H^p$$. Complex Var. Theory Appl. 28, 149–158 (1995) es_ES
dc.relation.references Aleman, A., Siskakis, A.G.: Integration operators on Bergman spaces. Indiana Univ. Math. J. 46, 337–356 (1997) es_ES
dc.relation.references Basallote, M., Contreras, M.D., Hernández-Mancera, C., Martín, M.J., Paúl, P.J.: Volterra operators and semigroups in weighted Banach spaces of analytic functions. Collect. Math. 65, 233–249 (2014) es_ES
dc.relation.references Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Stud. Math. 127, 137–168 (1998) es_ES
dc.relation.references Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Austral. Math. Soc. Ser. A 54(1), 70–79 (1993) es_ES
dc.relation.references Blasco, O., Girela, D., Márquez, M.A.: Mean growth of the derivative of analytic functions, bounded mean oscillation and normal functions. Indiana Univ. Math. J. 47, 893–912 (1998) es_ES
dc.relation.references Bonet, J.: The spectrum of Volterra operators on weighted spaces of entire functions. Q. J. Math. 66, 799–807 (2015) es_ES
dc.relation.references Constantin, O.: A Volterra-type integration operator on Fock spaces. Proc. Am. Math. Soc. 140, 4247–4257 (2012) es_ES
dc.relation.references Constantin, O., Persson, A.-M.: The spectrum of Volterra-type integration operators on generalized Fock spaces. Bull. London Math. Soc. 47, 958–963 (2015) es_ES
dc.relation.references Contreras, M., Hernández-Díaz, A.G.: Weighted composition operators in weighted Banach spacs of analytic functions. J. Austral. Math. Soc. (Ser. A) 69, 41–60 (2000) es_ES
dc.relation.references Duren, P.: Theory of $$H^p$$ Spaces. Academic Press, New York (1970) es_ES
dc.relation.references Girela, D., González, C., Peláez, J.A.: Multiplication and division by inner functions in the space of Bloch functions. Proc. Am. Math. Soc. 134, 1309–1314 (2006) es_ES
dc.relation.references Harutyunyan, A., Lusky, W.: On the boundedness of the differentiation operator between weighted spaces of holomorphic functions. Stud. Math. 184, 233–247 (2008) es_ES
dc.relation.references Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Grad. Texts in Math. 199, Springer, New York (2000) es_ES
dc.relation.references Hu, Z.: Extended Cesàro operators on mixed-norm spaces. Proc. Am. Math. Soc. 131, 2171–2179 (2003) es_ES
dc.relation.references Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981) es_ES
dc.relation.references Korenblum, B.: An extension of the Nevanlinna theory. Acta Math. 135, 187–219 (1975) es_ES
dc.relation.references Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomophic functions. Stud. Math. 75, 19–45 (2006) es_ES
dc.relation.references Malman, B.: Spectra of generalized Cesáro operators acting on growth spaces. Integr. Equ. Oper. Theory 90, 26 (2018) es_ES
dc.relation.references Meise, R., Vogt, D.: Introduction to Functional Analysis, Vol 2 of Oxford Graduate Texts in Mathematics. The Clarendon Press, New York (1997) es_ES
dc.relation.references Persson, A.-M.: On the spectrum of the Cesàro operator on spaces of analytic functions. J. Math. Anal. Appl. 340, 1180–1203 (2008) es_ES
dc.relation.references Pommerenke, C.: Schlichte Funktionen un analytische Functionen von beschrn̈kter mittlerer Oszilation. Comment. Math. Helv. 52, 591–602 (1977) es_ES
dc.relation.references Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287–302 (1971) es_ES
dc.relation.references Siskakis, A.: Volterra operators on spaces of analytic functions–a survey. In: Proceedings of the First Advanced Course in Operator Theory and Complex Analysis, Univ. Sevilla Serc. Publ., Seville, 2006, pp. 51–68 (2006) es_ES
dc.relation.references Stević, S.: Boundedness and compactness of an integral operator on a weighted space on the polydisc. Indian J. Pure Appl. Math. 37, 343–355 (2006) es_ES
dc.relation.references Vasilescu, F.H.: Analytic functional calculus and spectral decompositions. Translated from the Romanian. Mathematics and its Applications (East European Series), 1. D. Reidel Publishing Co., Dordrecht (1982) es_ES
dc.relation.references Zhu, K.: Operator Theory on Function Spaces, Math. Surveys and Monographs Vo. 138. Amer. Math. Soc. (2007) es_ES


This item appears in the following Collection(s)

Show simple item record