Mostrar el registro sencillo del ítem
dc.contributor.author | Caballer-Tarazona, Vicent![]() |
es_ES |
dc.contributor.author | Guadalajara Olmeda, María Natividad![]() |
es_ES |
dc.contributor.author | Vivas-Consuelo, David![]() |
es_ES |
dc.date.accessioned | 2020-12-17T04:33:32Z | |
dc.date.available | 2020-12-17T04:33:32Z | |
dc.date.issued | 2019-04 | es_ES |
dc.identifier.issn | 0168-8510 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157298 | |
dc.description.abstract | [EN] Objectives: This article has two main purposes. Firstly, to model the integrated healthcare expenditure for the entire population of a health district in Spain, according to multimorbidity, using Clinical Risk Groups (CRG). Secondly, to show how the predictive model is applied to the allocation of health budgets. Methods: The database used contains the information of 156,811 inhabitants in a Valencian Community health district in 2013. The variables were: age, sex, CRG's main health statuses, severity level, and healthcare expenditure. The two-part models were used for predicting healthcare expenditure. From the coefficients of the selected model, the relative weights of each group were calculated to set a case-mix in each health district. Results: Models based on multimorbidity-related variables better explained integrated healthcare expenditure. In the first part of the two-part models, a logit model was used, while the positive costs were modelled with a log-linear OLS regression. An adjusted R-2 of 46-49% between actual and predicted values was obtained. With the weights obtained by CRG, the differences found with the case-mix of each health district proved most useful for budgetary purposes. Conclusions: The expenditure models allowed improved budget allocations between health districts by taking into account morbidity, as opposed to budgeting based solely on population size. | es_ES |
dc.description.sponsorship | This work was supported by "Instituto de Salud Carlos III - Ministerio de Economia y Competitividad" and the European Union (FEDER funds) - FIS PI12/00037. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Health Policy | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Budget | es_ES |
dc.subject | Case-mix system | es_ES |
dc.subject | Health econometrics | es_ES |
dc.subject | Healthcare expenditure | es_ES |
dc.subject | Multimorbidity | es_ES |
dc.subject | Risk adjustment | es_ES |
dc.subject | Two-part models | es_ES |
dc.subject.classification | ECONOMIA APLICADA | es_ES |
dc.subject.classification | ECONOMIA, SOCIOLOGIA Y POLITICA AGRARIA | es_ES |
dc.title | Predicting healthcare expenditure by multimorbidity groups | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.healthpol.2019.02.002 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PI12%2F00037/ES/Análisis y modelización del gasto farmacéutico utilizando Clinical Risk Group/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials | es_ES |
dc.description.bibliographicCitation | Caballer-Tarazona, V.; Guadalajara Olmeda, MN.; Vivas-Consuelo, D. (2019). Predicting healthcare expenditure by multimorbidity groups. Health Policy. 123(4):427-434. https://doi.org/10.1016/j.healthpol.2019.02.002 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.healthpol.2019.02.002 | es_ES |
dc.description.upvformatpinicio | 427 | es_ES |
dc.description.upvformatpfin | 434 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 123 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.pmid | 30791988 | es_ES |
dc.relation.pasarela | S\378495 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |