- -

Pilot performance of a dedicated prostate PET suitable for diagnosis and biopsy guidance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pilot performance of a dedicated prostate PET suitable for diagnosis and biopsy guidance

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cañizares-Ledo, Gabriel es_ES
dc.contributor.author Gonzalez-Montoro, Andrea es_ES
dc.contributor.author Freire, Marta es_ES
dc.contributor.author Lamprou, Efthymios es_ES
dc.contributor.author Barrio, John es_ES
dc.contributor.author Sánchez Martínez, Filomeno es_ES
dc.contributor.author Benlloch Baviera, Jose María es_ES
dc.contributor.author Hernandez, Liczandro es_ES
dc.contributor.author Moliner, Laura es_ES
dc.contributor.author Vidal San Sebastian, Luis Fernando es_ES
dc.contributor.author Torres, Irene es_ES
dc.contributor.author Sopena, Pablo es_ES
dc.contributor.author Vera-Donoso, Cesar D. es_ES
dc.contributor.author Bello, Pilar es_ES
dc.contributor.author Barbera, Julio es_ES
dc.contributor.author González Martínez, Antonio Javier es_ES
dc.date.accessioned 2020-12-17T04:33:43Z
dc.date.available 2020-12-17T04:33:43Z
dc.date.issued 2020-06-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157303
dc.description.abstract [EN] Background: Prostate cancer (PCa) represents one of the most common types of cancers facing the male population. Nowadays, to confirm PCa, systematic or multiparametric MRI-targeted transrectal or transperineal biopsies of the prostate are required. However, due to the lack of an accurate imaging technique capable to precisely locate cancerous cells in the prostate, ultrasound biopsies sample random parts of the prostate and, therefore, it is possible to miss regions where those cancerous cells are present. In spite of the improvement with multiparametric MRI, the low reproducibility of its reading undermines the specificity of the method. Recent development of prostatespecific radiotracers has grown the interest on using positron emission tomography (PET) scanners for this purpose, but technological improvements are still required (current scanners have resolutions in the range of 4¿5 mm). Results: The main goal of this work is to improve state-of-the-art PCa imaging and diagnosis. We have focused our efforts on the design of a novel prostate-dedicated PET scanner, named ProsPET. This system has small scanner dimensions defined by a ring of just 41 cm inner diameter. In this work, we report the design, implementation, and evaluation (both through simulations and real data) of the ProsPET scanner. We have been able to achieve < 2 mm resolution in reconstructed images and high sensitivity. In addition, we have included a comparison with the Philips Gemini-TF scanner, which is used for routine imaging of PCa patients. The ProsPET exhibits better contrast, especially for rod sizes as small as 4.5 mm in diameter. Finally, we also show the first reconstructed image of a PCa patient acquired with the ProsPET. Conclusions: We have designed and built a prostate specific PET system, with a small footprint and improved spatial resolution when compared to conventional whole-body PET scanners. The gamma ray impact within each detector block includes accurate DOI determination, correcting for the parallax error. The potential role of combined organdedicated prostate-specific membrane antigen (PSMA) PET and ultrasound devices, as a prebiopsy diagnostic tool, could be used to guide sampling of the most aggressive sites in the prostate. es_ES
dc.description.sponsorship The work presented in this article has been partially funded by a research grant from the regional government of the Comunitat Valenciana (Spain), co-funded by the European Union ERDF funds (European Regional Development Fund) of the Comunitat Valenciana 2014-2020, with reference IDIFEDER/2018/032 (High-Performance Algorithms for the Modelling, Simulation and early Detection of diseases in Personalized Medicine). This project has also received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No 695536). It has also been supported by the EU Grant 603002 under the FP7 program and by the Spanish Ministerio de Economia, Industria y Competitividad under Grant e and through PROSPET (DTS15/00152) funded by the Ministerio de Economia y Competitividad. es_ES
dc.language Inglés es_ES
dc.publisher SpringerOpen (part of Springer Nature) es_ES
dc.relation.ispartof EJNMMI Physics es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Pilot performance of a dedicated prostate PET suitable for diagnosis and biopsy guidance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s40658-020-00305-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/603002/EU/Multimodal Imaging of Neurological Disorders/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DTS15%2F00152/ES/Desarrollo de un detector PET para guiar la biopsia, el tratamiento y el seguimiento del cáncer de próstata (PROSPECT)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/695536/EU/Innovative PET scanner for dynamic imaging/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F032/ES/ALGORITMOS DE ALTAS PRESTACIONES PARA EL MODELADO, SIMULACIÓN Y DETECCIÓN TEMPRANA DE ENFERMEDADES EN UN ESCENARIO DE MEDICINA PERSONALIZADA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Cañizares-Ledo, G.; Gonzalez-Montoro, A.; Freire, M.; Lamprou, E.; Barrio, J.; Sánchez Martínez, F.; Benlloch Baviera, JM.... (2020). Pilot performance of a dedicated prostate PET suitable for diagnosis and biopsy guidance. EJNMMI Physics. 7(1):1-17. https://doi.org/10.1186/s40658-020-00305-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s40658-020-00305-y es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2197-7364 es_ES
dc.identifier.pmid 32504230 es_ES
dc.identifier.pmcid PMC7275110 es_ES
dc.relation.pasarela S\413829 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references GLOBOCAN 2018. http://www.gco.iarc.fr/today/ datasources-methods. Accessed 26 Dec 2019. es_ES
dc.description.references Ferlay J, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN. Int J Cancer. 2012;2015:136–E359. es_ES
dc.description.references Rawla P. Epidemiology of prostate cancer. World J Oncol. 2019;10(2):63–89. es_ES
dc.description.references Smith JA, et al. Transrectal ultrasound versus digital rectal examination for the staging of carcinoma of the prostate: results of a prospective multi-institutional trial. J Urology. 1997;157(3):902. es_ES
dc.description.references Smeenge M, et al. Role of transrectal ultrasonography (TRUS) in focal therapy of prostate cancer: report from a consensus panel. BJU Int. 2012:110–942. es_ES
dc.description.references Drost FJH, et al. Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database Syst Rev. 2019;4:CD012663. es_ES
dc.description.references European Association of Urology. https://uroweb.org/guideline/prostate-cancer . Accessed 26 Dec 2019. es_ES
dc.description.references Segall G, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans. J Nucl Med. 2010;51:1813. es_ES
dc.description.references Yamamoto Y, et al. Feasibility of tailored, selective and effective anticancer chemotherapy by direct injection of docetaxel-loaded immunoliposomes into Her2/neu positive gastric tumor xenografts. Int J Oncol. 2011;38(1):33. es_ES
dc.description.references Chen L, et al. MR-guided focused ultrasound: enhancement of intratumoral uptake of [H]-docetaxel in vivo. Phys Med Biol. 2010;55(24):–7399. es_ES
dc.description.references Osborne JR, et al. Prostate-specific membrane antigen-based imaging. Seminars and Original Investigations: Urologic Oncology; 2012. es_ES
dc.description.references Gonzalez AJ, et al. Organ-dedicated molecular imaging systems. IEEE Trans. Rad. Plasma Med. Scie. 2018;2:388. es_ES
dc.description.references Majewski S, Proffitt J. Dedicated mobile high resolution prostate PET imager with an insertable transrectal probe. US Patent. 2010;7:858–944. es_ES
dc.description.references Weinberg IN, et al. Flexible geometries for hand-held PET and SPECT cameras. IEEE NSS-MIC Conference Record. 2002. es_ES
dc.description.references Weinberg I. Dedicated apparatus and method for positron emission tomography of the prostate. US Patent. 2006;7:102–34. es_ES
dc.description.references Gonzalez-Montoro A, et al. Performance study of a large monolithic LYSO PET detector with accurate photon DOI using retroreflector layers. IEEE Trans. Rad. Plasma Med. Scie. 2017;1:229. es_ES
dc.description.references Gonzalez-Montoro A, et al. Detector block performance based on a monolithic LYSO crystal using a novel signal multiplexing method. Nucl Instrum Meth. 2018;912:372-77. es_ES
dc.description.references Gonzalez-Montoro A, et al. Performance comparison of large-area SiPM arrays suitable for gamma ray detectors. Biomed Phys Eng Express. 2019;5:045013. es_ES
dc.description.references Seimetz M, et al. Correction algorithms for signal reduction in insensitive areas of a small gamma camera. J Instrum. 2014;9(05):C05042. es_ES
dc.description.references Freire M, et al. Calibration of gamma ray impacts in monolithic-based detectors using Voronoi diagrams. In IEEE Transactions on Radiation and Plasma Medical Sciences. 2019. https://doi.org/10.1109/TRPMS.2019.2947716 . es_ES
dc.description.references Jan S, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49:4543–61. es_ES
dc.description.references Merlin T, et al. CASToR: a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction. Phys Med Biol. 2018;63(18):5505. es_ES
dc.description.references Jacobs F, et al. A fast algorithm to calculate the exact radiological path through a pixel or voxel space. J Comput Inf Technol. 1998;6(1). es_ES
dc.description.references Gonzalez-Montoro A, et al. Novel method to measure the intrinsic spatial resolution in PET detectors based on monolithic crystals. Nucl. Instrum. Meth. A. 2019;920:39(9). es_ES
dc.description.references Vicente E, et al. Normalization in 3D PET: dependence on the activity distribution of the source. IEEE Nuclear Science Symposium Conference Record. 2006:M06–379. es_ES
dc.description.references Soriano A, et al. Attenuation correction without transmission scan for the MAMMI breast PET. Nucl Instrum Meth A. 2011;648:S75. es_ES
dc.description.references Yushkevich PA, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;34(3):1116-28. es_ES
dc.description.references Gonzalez AJ, et al. Initial results of the MINDView PET insert inside the 3T mMR. IEEE Trans Rad Plasma Med Scie. 2019;3:343. es_ES
dc.description.references Suti S, et al. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 2007;48(3):471–80. es_ES
dc.description.references Watson C, et al. NEMA NU 2 performance tests for scanners with intrinsic radioactivity. J Nucl Med. 2004;45:822. es_ES
dc.description.references National Electrical Manufacturers Association. NEMA NU 4-2008. Performance measurements of small animal positron emission tomographs. 2008. es_ES
dc.description.references Gonzalez AJ, et al. A PET design based on SiPM and monolithic LYSO crystals: performance evaluation. IEEE Trans Nucl Scie. 2016;63:2471. es_ES
dc.description.references Barbosa FG. Clinical perspectives of PSMA PET/MRI for prostate cancer. Clinics. 2018;73(Suppl 1):e586s. es_ES
dc.description.references Uprimny C, et al. (68)Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour. Eur J Nucl Med Mol Imaging. 2017;44(6):941-49. es_ES
dc.description.references Koerber SA, et al. 68Ga-PSMA-11 PET/CT in newly diagnosed carcinoma of the prostate: correlation of intraprostatic PSMA uptake with several clinical parameters. J Nucl Med. 2017;58(12):1943–8. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem