- -

Characterisation of on-chip wireless interconnects based on silicon nanoantennas via near-field scanning optical microscopy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterisation of on-chip wireless interconnects based on silicon nanoantennas via near-field scanning optical microscopy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Díaz-Fernández, Francisco Javier es_ES
dc.contributor.author Pinilla-Cienfuegos, Elena es_ES
dc.contributor.author García Meca, Carlos es_ES
dc.contributor.author Lechago-Buendia, Sergio es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author Martí Sendra, Javier es_ES
dc.date.accessioned 2020-12-17T04:33:45Z
dc.date.available 2020-12-17T04:33:45Z
dc.date.issued 2019-04 es_ES
dc.identifier.issn 1751-8768 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157304
dc.description This paper is a postprint of a paper submitted to and accepted for publication in IET Optoelectronics and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library. es_ES
dc.description.abstract [EN] Recently, a novel Photonic-Integrated Circuit (PIC) paradigm based on the use of a new kind of ultra-directive, lowloss, highly efficient and broadband silicon nanoantenna has enabled the first demonstration of an on-chip wireless interconnect, with potential applications in reconfigurable networks and lab-on-a-chip systems. Despite the fact that the far-field properties of these nanoantennas have been widely studied, their near-field behaviour stays unexplored. Here, the authors study this feature through scanning near-field optical microscopy (SNOM). For this purpose, the authors design and characterise an on-chip twoport wireless link using a tailored SNOM. The conducted near-field measurements will be useful to improve the design of these integrated photonic devices with potential impact on a variety of applications, from biosensing to optical communications. es_ES
dc.description.sponsorship Funding support from the Spanish Ministry of Economy and Competiveness under grants TEC2015-63838-C3-1-R OPTONANOSENS (MINECO/FEDER, UE) and TEC2015-73581-JIN PHUTURE (AEI/FEDER, UE), the EU-funded H2020-FET-HPC EXANEST (No. 671553) and the GeneralitatValenciana's PROMETEO grant NANOMET PLUS (PROMETEO II/2014/34) are acknowledged. E.P.-C. acknowledges support from GeneralitatValenciana under Grant APOSTD/2016/025. es_ES
dc.language Inglés es_ES
dc.publisher Institution of Electrical Engineers es_ES
dc.relation.ispartof IET Optoelectronics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Characterisation of on-chip wireless interconnects based on silicon nanoantennas via near-field scanning optical microscopy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1049/iet-opt.2018.5071 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671553/EU/European Exascale System Interconnect and Storage/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F034/ES/Nanomet Plus/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-63838-C3-1-R/ES/DETECCION DE TOXINAS Y AGENTES PATOGENOS MEDIANTE BIOSENSORES OPTICOS NANOMETRICOS PARA AMENAZAS NBQ/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2016%2F025/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-73581-JIN/ES/HACIA UNA NUEVA GENERACION DE CIRCUITOS INTEGRADOS FOTONICOS BASADOS EN OPTICA DE TRANSFORMACION, METASUPERFICIES Y MATERIALES RECONFIGURABLES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.description.bibliographicCitation Díaz-Fernández, FJ.; Pinilla-Cienfuegos, E.; García Meca, C.; Lechago-Buendia, S.; Griol Barres, A.; Martí Sendra, J. (2019). Characterisation of on-chip wireless interconnects based on silicon nanoantennas via near-field scanning optical microscopy. IET Optoelectronics. 13(2):72-76. https://doi.org/10.1049/iet-opt.2018.5071 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1049/iet-opt.2018.5071 es_ES
dc.description.upvformatpinicio 72 es_ES
dc.description.upvformatpfin 76 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\377189 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Foundation for Research and Technology-Hellas es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Kirchain, R., & Kimerling, L. (2007). A roadmap for nanophotonics. Nature Photonics, 1(6), 303-305. doi:10.1038/nphoton.2007.84 es_ES
dc.description.references Zhang, Y., Watts, B., Guo, T., Zhang, Z., Xu, C., & Fang, Q. (2016). Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review. Micromachines, 7(4), 70. doi:10.3390/mi7040070 es_ES
dc.description.references Redding, B., Liew, S. F., Sarma, R., & Cao, H. (2013). Compact spectrometer based on a disordered photonic chip. Nature Photonics, 7(9), 746-751. doi:10.1038/nphoton.2013.190 es_ES
dc.description.references Fan, X., & White, I. M. (2011). Optofluidic microsystems for chemical and biological analysis. Nature Photonics, 5(10), 591-597. doi:10.1038/nphoton.2011.206 es_ES
dc.description.references Condrat, C., Kalla, P., & Blair, S. (2014). Crossing-Aware Channel Routing for Integrated Optics. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(6), 814-825. doi:10.1109/tcad.2014.2317575 es_ES
dc.description.references Brongersma, M. L. (2008). Engineering optical nanoantennas. Nature Photonics, 2(5), 270-272. doi:10.1038/nphoton.2008.60 es_ES
dc.description.references Bellanca, G., Calò, G., Kaplan, A. E., Bassi, P., & Petruzzelli, V. (2017). Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications. Optics Express, 25(14), 16214. doi:10.1364/oe.25.016214 es_ES
dc.description.references Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A., & Kivshar, Y. S. (2012). All-dielectric optical nanoantennas. Optics Express, 20(18), 20599. doi:10.1364/oe.20.020599 es_ES
dc.description.references Krasnok, A. E., Simovski, C. R., Belov, P. A., & Kivshar, Y. S. (2014). Superdirective dielectric nanoantennas. Nanoscale, 6(13), 7354-7361. doi:10.1039/c4nr01231c es_ES
dc.description.references García-Meca, C., Lechago, S., Brimont, A., Griol, A., Mas, S., Sánchez, L., … Martí, J. (2017). On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices. Light: Science & Applications, 6(9), e17053-e17053. doi:10.1038/lsa.2017.53 es_ES
dc.description.references Kosako, T., Kadoya, Y., & Hofmann, H. F. (2010). Directional control of light by a nano-optical Yagi–Uda antenna. Nature Photonics, 4(5), 312-315. doi:10.1038/nphoton.2010.34 es_ES
dc.description.references Dvořák, P., Édes, Z., Kvapil, M., Šamořil, T., Ligmajer, F., Hrtoň, M., … Šikola, T. (2017). Imaging of near-field interference patterns by aperture-type SNOM – influence of illumination wavelength and polarization state. Optics Express, 25(14), 16560. doi:10.1364/oe.25.016560 es_ES
dc.description.references Bazylewski, P., Ezugwu, S., & Fanchini, G. (2017). A Review of Three-Dimensional Scanning Near-Field Optical Microscopy (3D-SNOM) and Its Applications in Nanoscale Light Management. Applied Sciences, 7(10), 973. doi:10.3390/app7100973 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem