Mostrar el registro sencillo del ítem
dc.contributor.author | Díaz-Fernández, Francisco Javier | es_ES |
dc.contributor.author | Pinilla-Cienfuegos, Elena | es_ES |
dc.contributor.author | García Meca, Carlos | es_ES |
dc.contributor.author | Lechago-Buendia, Sergio | es_ES |
dc.contributor.author | Griol Barres, Amadeu | es_ES |
dc.contributor.author | Martí Sendra, Javier | es_ES |
dc.date.accessioned | 2020-12-17T04:33:45Z | |
dc.date.available | 2020-12-17T04:33:45Z | |
dc.date.issued | 2019-04 | es_ES |
dc.identifier.issn | 1751-8768 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157304 | |
dc.description | This paper is a postprint of a paper submitted to and accepted for publication in IET Optoelectronics and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library. | es_ES |
dc.description.abstract | [EN] Recently, a novel Photonic-Integrated Circuit (PIC) paradigm based on the use of a new kind of ultra-directive, lowloss, highly efficient and broadband silicon nanoantenna has enabled the first demonstration of an on-chip wireless interconnect, with potential applications in reconfigurable networks and lab-on-a-chip systems. Despite the fact that the far-field properties of these nanoantennas have been widely studied, their near-field behaviour stays unexplored. Here, the authors study this feature through scanning near-field optical microscopy (SNOM). For this purpose, the authors design and characterise an on-chip twoport wireless link using a tailored SNOM. The conducted near-field measurements will be useful to improve the design of these integrated photonic devices with potential impact on a variety of applications, from biosensing to optical communications. | es_ES |
dc.description.sponsorship | Funding support from the Spanish Ministry of Economy and Competiveness under grants TEC2015-63838-C3-1-R OPTONANOSENS (MINECO/FEDER, UE) and TEC2015-73581-JIN PHUTURE (AEI/FEDER, UE), the EU-funded H2020-FET-HPC EXANEST (No. 671553) and the GeneralitatValenciana's PROMETEO grant NANOMET PLUS (PROMETEO II/2014/34) are acknowledged. E.P.-C. acknowledges support from GeneralitatValenciana under Grant APOSTD/2016/025. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institution of Electrical Engineers | es_ES |
dc.relation.ispartof | IET Optoelectronics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Characterisation of on-chip wireless interconnects based on silicon nanoantennas via near-field scanning optical microscopy | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1049/iet-opt.2018.5071 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/671553/EU/European Exascale System Interconnect and Storage/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F034/ES/Nanomet Plus/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2015-63838-C3-1-R/ES/DETECCION DE TOXINAS Y AGENTES PATOGENOS MEDIANTE BIOSENSORES OPTICOS NANOMETRICOS PARA AMENAZAS NBQ/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2016%2F025/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2015-73581-JIN/ES/HACIA UNA NUEVA GENERACION DE CIRCUITOS INTEGRADOS FOTONICOS BASADOS EN OPTICA DE TRANSFORMACION, METASUPERFICIES Y MATERIALES RECONFIGURABLES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.description.bibliographicCitation | Díaz-Fernández, FJ.; Pinilla-Cienfuegos, E.; García Meca, C.; Lechago-Buendia, S.; Griol Barres, A.; Martí Sendra, J. (2019). Characterisation of on-chip wireless interconnects based on silicon nanoantennas via near-field scanning optical microscopy. IET Optoelectronics. 13(2):72-76. https://doi.org/10.1049/iet-opt.2018.5071 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1049/iet-opt.2018.5071 | es_ES |
dc.description.upvformatpinicio | 72 | es_ES |
dc.description.upvformatpfin | 76 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\377189 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Foundation for Research and Technology-Hellas | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Kirchain, R., & Kimerling, L. (2007). A roadmap for nanophotonics. Nature Photonics, 1(6), 303-305. doi:10.1038/nphoton.2007.84 | es_ES |
dc.description.references | Zhang, Y., Watts, B., Guo, T., Zhang, Z., Xu, C., & Fang, Q. (2016). Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review. Micromachines, 7(4), 70. doi:10.3390/mi7040070 | es_ES |
dc.description.references | Redding, B., Liew, S. F., Sarma, R., & Cao, H. (2013). Compact spectrometer based on a disordered photonic chip. Nature Photonics, 7(9), 746-751. doi:10.1038/nphoton.2013.190 | es_ES |
dc.description.references | Fan, X., & White, I. M. (2011). Optofluidic microsystems for chemical and biological analysis. Nature Photonics, 5(10), 591-597. doi:10.1038/nphoton.2011.206 | es_ES |
dc.description.references | Condrat, C., Kalla, P., & Blair, S. (2014). Crossing-Aware Channel Routing for Integrated Optics. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(6), 814-825. doi:10.1109/tcad.2014.2317575 | es_ES |
dc.description.references | Brongersma, M. L. (2008). Engineering optical nanoantennas. Nature Photonics, 2(5), 270-272. doi:10.1038/nphoton.2008.60 | es_ES |
dc.description.references | Bellanca, G., Calò, G., Kaplan, A. E., Bassi, P., & Petruzzelli, V. (2017). Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications. Optics Express, 25(14), 16214. doi:10.1364/oe.25.016214 | es_ES |
dc.description.references | Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A., & Kivshar, Y. S. (2012). All-dielectric optical nanoantennas. Optics Express, 20(18), 20599. doi:10.1364/oe.20.020599 | es_ES |
dc.description.references | Krasnok, A. E., Simovski, C. R., Belov, P. A., & Kivshar, Y. S. (2014). Superdirective dielectric nanoantennas. Nanoscale, 6(13), 7354-7361. doi:10.1039/c4nr01231c | es_ES |
dc.description.references | García-Meca, C., Lechago, S., Brimont, A., Griol, A., Mas, S., Sánchez, L., … Martí, J. (2017). On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices. Light: Science & Applications, 6(9), e17053-e17053. doi:10.1038/lsa.2017.53 | es_ES |
dc.description.references | Kosako, T., Kadoya, Y., & Hofmann, H. F. (2010). Directional control of light by a nano-optical Yagi–Uda antenna. Nature Photonics, 4(5), 312-315. doi:10.1038/nphoton.2010.34 | es_ES |
dc.description.references | Dvořák, P., Édes, Z., Kvapil, M., Šamořil, T., Ligmajer, F., Hrtoň, M., … Šikola, T. (2017). Imaging of near-field interference patterns by aperture-type SNOM – influence of illumination wavelength and polarization state. Optics Express, 25(14), 16560. doi:10.1364/oe.25.016560 | es_ES |
dc.description.references | Bazylewski, P., Ezugwu, S., & Fanchini, G. (2017). A Review of Three-Dimensional Scanning Near-Field Optical Microscopy (3D-SNOM) and Its Applications in Nanoscale Light Management. Applied Sciences, 7(10), 973. doi:10.3390/app7100973 | es_ES |