Mostrar el registro sencillo del ítem
dc.contributor.author | Gonzalez-Camejo, Josue | es_ES |
dc.contributor.author | Paches Giner, Maria Aguas Vivas | es_ES |
dc.contributor.author | Marín, A. | es_ES |
dc.contributor.author | Jiménez Benítez, Antonio Luis | es_ES |
dc.contributor.author | Seco, A. | es_ES |
dc.contributor.author | Barat, Ramón | es_ES |
dc.date.accessioned | 2020-12-17T04:33:51Z | |
dc.date.available | 2020-12-17T04:33:51Z | |
dc.date.issued | 2020-07-01 | es_ES |
dc.identifier.issn | 2053-1400 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157306 | |
dc.description.abstract | [EN] Although microalgae are recognised to release external organic matter (EOM), little is known about this phenomenon in microalgae cultivation systems, especially on a large scale. A study on the effect of microalgae-stressing factors such as temperature, nutrient limitation and ammonium oxidising bacteria (AOB) competition in EOM production by microalgae was carried out. The results showed non-statistically significant differences in EOM production at constant temperatures of 25, 30 and 35 degrees C. However, when the temperature was raised from 25 to 35 degrees C for 4 h a day, polysaccharide production increased significantly, indicating microalgae stress. Nutrient limitation also seemed to increase EOM production. No significant differences were found in EOM production under lab conditions when the microalgae competed with AOB for ammonium uptake. However, when the EOM concentration was monitored during continuous outdoor operation of a membrane photobioreactor (MPBR) plant, nitrifying bacteria activity was likely to be responsible for the increase in EOM concentration in the culture. Other factors such as high temperatures, ammonium-depletion and low light intensities could also have induced cell deterioration and thus have influenced EOM production in the outdoor MPBR plant. Membrane fouling seemed to depend on the biomass concentration of the culture. However, under the operating conditions tested, the behaviour of fouling rate with respect to the EOM concentration was different depending on the initial membrane state. | es_ES |
dc.description.sponsorship | This research work has been supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Projects CTM2014-54980-C2-1-R and CTM2014-54980-C2-2-R) jointly with the European Regional Development Fund (ERDF), both of which are gratefully acknowledged. This was also supported by the Spanish Ministry of Education, Culture and Sport via a pre-doctoral FPU fellowship to author J. Gonzalez-Camejo (FPU14/05082) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Environmental Science: Water Research & Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Microalgae | es_ES |
dc.subject | Extracellular organic matter | es_ES |
dc.subject | Protein | es_ES |
dc.subject | Polysaccharide | es_ES |
dc.subject | Stress factor | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Production of microalgal external organic matter in a Chlorella-dominated culture: influence of temperature and stress factors | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/d0ew00176g | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU14%2F05082/ES/FPU14%2F05082/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Gonzalez-Camejo, J.; Paches Giner, MAV.; Marín, A.; Jiménez Benítez, AL.; Seco, A.; Barat, R. (2020). Production of microalgal external organic matter in a Chlorella-dominated culture: influence of temperature and stress factors. Environmental Science: Water Research & Technology. (7):1-14. https://doi.org/10.1039/d0ew00176g | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/d0ew00176g | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.pasarela | S\412334 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Puyol, D., Batstone, D. J., Hülsen, T., Astals, S., Peces, M., & Krömer, J. O. (2017). Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.02106 | es_ES |
dc.description.references | Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049 | es_ES |
dc.description.references | Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492 | es_ES |
dc.description.references | Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2016). Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment. Journal of Environmental Management, 166, 45-54. doi:10.1016/j.jenvman.2015.10.004 | es_ES |
dc.description.references | Stuckey, D. C. (2012). Recent developments in anaerobic membrane reactors. Bioresource Technology, 122, 137-148. doi:10.1016/j.biortech.2012.05.138 | es_ES |
dc.description.references | Wallace, J., Champagne, P., & Hall, G. (2016). Time series relationships between chlorophyll-a, dissolved oxygen, and pH in three facultative wastewater stabilization ponds. Environmental Science: Water Research & Technology, 2(6), 1032-1040. doi:10.1039/c6ew00202a | es_ES |
dc.description.references | Kang, D., Kim, K., Jang, Y., Moon, H., Ju, D., & Jahng, D. (2018). Nutrient removal and community structure of wastewater-borne algal-bacterial consortia grown in raw wastewater with various wavelengths of light. International Biodeterioration & Biodegradation, 126, 10-20. doi:10.1016/j.ibiod.2017.09.022 | es_ES |
dc.description.references | Li, Y., Slouka, S. A., Henkanatte-Gedera, S. M., Nirmalakhandan, N., & Strathmann, T. J. (2019). Seasonal treatment and economic evaluation of an algal wastewater system for energy and nutrient recovery. Environmental Science: Water Research & Technology, 5(9), 1545-1557. doi:10.1039/c9ew00242a | es_ES |
dc.description.references | Price, J. R., Keshani Langroodi, S., Lan, Y., Becker, J. M., Shieh, W. K., Rosen, G. L., & Sales, C. M. (2016). Emerging investigators series: untangling the microbial ecosystem and kinetics in a nitrogen removing photosynthetic high density bioreactor. Environmental Science: Water Research & Technology, 2(4), 705-716. doi:10.1039/c6ew00078a | es_ES |
dc.description.references | González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. Journal of Environmental Management, 245, 76-85. doi:10.1016/j.jenvman.2019.05.010 | es_ES |
dc.description.references | González-Camejo, J., Aparicio, S., Jiménez-Benítez, A., Pachés, M., Ruano, M. V., Borrás, L., … Seco, A. (2020). Improving membrane photobioreactor performance by reducing light path: operating conditions and key performance indicators. Water Research, 172, 115518. doi:10.1016/j.watres.2020.115518 | es_ES |
dc.description.references | Guldhe, A., Kumari, S., Ramanna, L., Ramsundar, P., Singh, P., Rawat, I., & Bux, F. (2017). Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. Journal of Environmental Management, 203, 299-315. doi:10.1016/j.jenvman.2017.08.012 | es_ES |
dc.description.references | Tenorio, R., Fedders, A. C., Strathmann, T. J., & Guest, J. S. (2017). Impact of growth phases on photochemically produced reactive species in the extracellular matrix of algal cultivation systems. Environmental Science: Water Research & Technology, 3(6), 1095-1108. doi:10.1039/c7ew00172j | es_ES |
dc.description.references | Togarcheti, S. C., Mediboyina, M. kumar, Chauhan, V. S., Mukherji, S., Ravi, S., & Mudliar, S. N. (2017). Life cycle assessment of microalgae based biodiesel production to evaluate the impact of biomass productivity and energy source. Resources, Conservation and Recycling, 122, 286-294. doi:10.1016/j.resconrec.2017.01.008 | es_ES |
dc.description.references | Zhang, Y., Kendall, A., & Yuan, J. (2014). A comparison of on-site nutrient and energy recycling technologies in algal oil production. Resources, Conservation and Recycling, 88, 13-20. doi:10.1016/j.resconrec.2014.04.011 | es_ES |
dc.description.references | González-Camejo, J., Barat, R., Aguado, D., & Ferrer, J. (2020). Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor. Water Research, 169, 115238. doi:10.1016/j.watres.2019.115238 | es_ES |
dc.description.references | Gupta, S., Pawar, S. B., & Pandey, R. A. (2019). Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Science of The Total Environment, 687, 1107-1126. doi:10.1016/j.scitotenv.2019.06.115 | es_ES |
dc.description.references | Bilad, M. R., Azizo, A. S., Wirzal, M. D. H., Jia Jia, L., Putra, Z. A., Nordin, N. A. H. M., … Yusoff, A. R. M. (2018). Tackling membrane fouling in microalgae filtration using nylon 6,6 nanofiber membrane. Journal of Environmental Management, 223, 23-28. doi:10.1016/j.jenvman.2018.06.007 | es_ES |
dc.description.references | Razzak, S. A., Ali, S. A. M., Hossain, M. M., & deLasa, H. (2017). Biological CO2 fixation with production of microalgae in wastewater – A review. Renewable and Sustainable Energy Reviews, 76, 379-390. doi:10.1016/j.rser.2017.02.038 | es_ES |
dc.description.references | Gao, F., Cui, W., Xu, J.-P., Li, C., Jin, W.-H., & Yang, H.-L. (2019). Lipid accumulation properties of Chlorella vulgaris and Scenedesmus obliquus in membrane photobioreactor (MPBR) fed with secondary effluent from municipal wastewater treatment plant. Renewable Energy, 136, 671-676. doi:10.1016/j.renene.2019.01.038 | es_ES |
dc.description.references | Fortunato, L., Lamprea, A. F., & Leiknes, T. (2020). Evaluation of membrane fouling mitigation strategies in an algal membrane photobioreactor (AMPBR) treating secondary wastewater effluent. Science of The Total Environment, 708, 134548. doi:10.1016/j.scitotenv.2019.134548 | es_ES |
dc.description.references | Gong, H., Jin, Z., Xu, H., Yuan, Q., Zuo, J., Wu, J., & Wang, K. (2019). Enhanced membrane-based pre-concentration improves wastewater organic matter recovery: Pilot-scale performance and membrane fouling. Journal of Cleaner Production, 206, 307-314. doi:10.1016/j.jclepro.2018.09.209 | es_ES |
dc.description.references | Luo, Y., Henderson, R. K., & Le-Clech, P. (2019). Characterisation of organic matter in membrane photobioreactors (MPBRs) and its impact on membrane performance. Algal Research, 44, 101682. doi:10.1016/j.algal.2019.101682 | es_ES |
dc.description.references | Keyvan Hosseini, P., Pajoum Shariati, F., Delavari Amrei, H., & Heydarinasab, A. (2020). The influence of various orifice diameters on cake resistance and pore blocking resistance of a hybrid membrane photobioreactor (HMPBR). Separation and Purification Technology, 235, 116187. doi:10.1016/j.seppur.2019.116187 | es_ES |
dc.description.references | Wang, L., Pan, B., Gao, Y., Li, C., Ye, J., Yang, L., … Zhang, X. (2019). Efficient membrane microalgal harvesting: Pilot-scale performance and techno-economic analysis. Journal of Cleaner Production, 218, 83-95. doi:10.1016/j.jclepro.2019.01.321 | es_ES |
dc.description.references | Novoa, A. F., Fortunato, L., Rehman, Z. U., & Leiknes, T. (2020). Evaluating the effect of hydraulic retention time on fouling development and biomass characteristics in an algal membrane photobioreactor treating a secondary wastewater effluent. Bioresource Technology, 309, 123348. doi:10.1016/j.biortech.2020.123348 | es_ES |
dc.description.references | Bin Liu, Qu, F., Liang, H., Gan, Z., Yu, H., Li, G., & Van der Bruggen, B. (2017). Algae-laden water treatment using ultrafiltration: Individual and combined fouling effects of cells, debris, extracellular and intracellular organic matter. Journal of Membrane Science, 528, 178-186. doi:10.1016/j.memsci.2017.01.032 | es_ES |
dc.description.references | Robles, A., Ruano, M. V., Ribes, J., & Ferrer, J. (2013). Performance of industrial scale hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system at mesophilic and psychrophilic conditions. Separation and Purification Technology, 104, 290-296. doi:10.1016/j.seppur.2012.12.004 | es_ES |
dc.description.references | Robles, A., Ruano, M. V., Ribes, J., & Ferrer, J. (2012). Sub-critical long-term operation of industrial scale hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system. Separation and Purification Technology, 100, 88-96. doi:10.1016/j.seppur.2012.09.010 | es_ES |
dc.description.references | Robles, Á., Capson-Tojo, G., Gales, A., Viruela, A., Sialve, B., Seco, A., … Ferrer, J. (2020). Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale. Bioresource Technology, 301, 122672. doi:10.1016/j.biortech.2019.122672 | es_ES |
dc.description.references | Porcelli, N., & Judd, S. (2010). Chemical cleaning of potable water membranes: A review. Separation and Purification Technology, 71(2), 137-143. doi:10.1016/j.seppur.2009.12.007 | es_ES |
dc.description.references | Delattre, C., Pierre, G., Laroche, C., & Michaud, P. (2016). Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnology Advances, 34(7), 1159-1179. doi:10.1016/j.biotechadv.2016.08.001 | es_ES |
dc.description.references | Sha, J., Lu, Z., Ye, J., Wang, G., Hu, Q., Chen, Y., & Zhang, X. (2019). The inhibition effect of recycled Scenedesmus acuminatus culture media: Influence of growth phase, inhibitor identification and removal. Algal Research, 42, 101612. doi:10.1016/j.algal.2019.101612 | es_ES |
dc.description.references | Discart, V., Bilad, M. R., Marbelia, L., & Vankelecom, I. F. J. (2014). Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle. Bioresource Technology, 152, 321-328. doi:10.1016/j.biortech.2013.11.019 | es_ES |
dc.description.references | Li, M., Zhu, W., Gao, L., & Lu, L. (2012). Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates. Journal of Applied Phycology, 25(4), 1023-1030. doi:10.1007/s10811-012-9937-7 | es_ES |
dc.description.references | Barker, D. J., & Stuckey, D. C. (1999). A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research, 33(14), 3063-3082. doi:10.1016/s0043-1354(99)00022-6 | es_ES |
dc.description.references | Jebali, A., Acién, F. G., Rodriguez Barradas, E., Olguín, E. J., Sayadi, S., & Molina Grima, E. (2018). Pilot-scale outdoor production of Scenedesmus sp. in raceways using flue gases and centrate from anaerobic digestion as the sole culture medium. Bioresource Technology, 262, 1-8. doi:10.1016/j.biortech.2018.04.057 | es_ES |
dc.description.references | González-Camejo, J., Aparicio, S., Ruano, M. V., Borrás, L., Barat, R., & Ferrer, J. (2019). Effect of ambient temperature variations on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella. Bioresource Technology, 290, 121788. doi:10.1016/j.biortech.2019.121788 | es_ES |
dc.description.references | Nagarajan, D., Lee, D.-J., Chen, C.-Y., & Chang, J.-S. (2020). Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Bioresource Technology, 302, 122817. doi:10.1016/j.biortech.2020.122817 | es_ES |
dc.description.references | Kwon, G., Kim, H., Song, C., & Jahng, D. (2019). Co-culture of microalgae and enriched nitrifying bacteria for energy-efficient nitrification. Biochemical Engineering Journal, 152, 107385. doi:10.1016/j.bej.2019.107385 | es_ES |
dc.description.references | Day, J. G., Gong, Y., & Hu, Q. (2017). Microzooplanktonic grazers – A potentially devastating threat to the commercial success of microalgal mass culture. Algal Research, 27, 356-365. doi:10.1016/j.algal.2017.08.024 | es_ES |
dc.description.references | Qureshi, N., Annous, B. A., Ezeji, T. C., Karcher, P., & Maddox, I. S. (2005). Microbial Cell Factories, 4(1), 24. doi:10.1186/1475-2859-4-24 | es_ES |
dc.description.references | González-Camejo, J., Serna-García, R., Viruela, A., Pachés, M., Durán, F., Robles, A., … Seco, A. (2017). Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment. Bioresource Technology, 244, 15-22. doi:10.1016/j.biortech.2017.07.126 | es_ES |
dc.description.references | Rossi, S., Casagli, F., Mantovani, M., Mezzanotte, V., & Ficara, E. (2020). Selection of photosynthesis and respiration models to assess the effect of environmental conditions on mixed microalgae consortia grown on wastewater. Bioresource Technology, 305, 122995. doi:10.1016/j.biortech.2020.122995 | es_ES |
dc.description.references | Luo, Y., Le-Clech, P., & Henderson, R. K. (2018). Assessment of membrane photobioreactor (MPBR) performance parameters and operating conditions. Water Research, 138, 169-180. doi:10.1016/j.watres.2018.03.050 | es_ES |
dc.description.references | González-Camejo, J., Barat, R., Pachés, M., Murgui, M., Seco, A., & Ferrer, J. (2017). Wastewater nutrient removal in a mixed microalgae–bacteria culture: effect of light and temperature on the microalgae–bacteria competition. Environmental Technology, 39(4), 503-515. doi:10.1080/09593330.2017.1305001 | es_ES |
dc.description.references | Krustok, I., Odlare, M., Truu, J., & Nehrenheim, E. (2016). Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake. Bioresource Technology, 202, 238-243. doi:10.1016/j.biortech.2015.12.020 | es_ES |
dc.description.references | Ling, Y., Sun, L., Wang, S., Lin, C. S. K., Sun, Z., & Zhou, Z. (2019). Cultivation of oleaginous microalga Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production. Biochemical Engineering Journal, 148, 162-169. doi:10.1016/j.bej.2019.05.012 | es_ES |
dc.description.references | DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017 | es_ES |
dc.description.references | Peterson, G. L. (1979). Review of the folin phenol protein quantitation method of lowry, rosebrough, farr and randall. Analytical Biochemistry, 100(2), 201-220. doi:10.1016/0003-2697(79)90222-7 | es_ES |
dc.description.references | APHA , Standard methods for the examination of water and wastewater, 21th. American Public Health Association , American Water Works Association, Water Environment Federation , Washington, USA , 2012 | es_ES |
dc.description.references | Sheng, G.-P., Yu, H.-Q., & Li, X.-Y. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnology Advances, 28(6), 882-894. doi:10.1016/j.biotechadv.2010.08.001 | es_ES |
dc.description.references | González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Preliminary data set to assess the performance of an outdoor membrane photobioreactor. Data in Brief, 27, 104599. doi:10.1016/j.dib.2019.104599 | es_ES |
dc.description.references | Rossi, S., Bellucci, M., Marazzi, F., Mezzanotte, V., & Ficara, E. (2018). Activity assessment of microalgal-bacterial consortia based on respirometric tests. Water Science and Technology, 78(1), 207-215. doi:10.2166/wst.2018.078 | es_ES |
dc.description.references | Lau, A. K. S., Bilad, M. R., Osman, N. B., Marbelia, L., Putra, Z. A., Nordin, N. A. H. M., … Khan, A. L. (2019). Sequencing batch membrane photobioreactor for simultaneous cultivation of aquaculture feed and polishing of real secondary effluent. Journal of Water Process Engineering, 29, 100779. doi:10.1016/j.jwpe.2019.100779 | es_ES |
dc.description.references | Molinuevo-Salces, B., García-González, M. C., & González-Fernández, C. (2010). Performance comparison of two photobioreactors configurations (open and closed to the atmosphere) treating anaerobically degraded swine slurry. Bioresource Technology, 101(14), 5144-5149. doi:10.1016/j.biortech.2010.02.006 | es_ES |
dc.description.references | Foladori, P., Petrini, S., & Andreottola, G. (2020). How suspended solids concentration affects nitrification rate in microalgal-bacterial photobioreactors without external aeration. Heliyon, 6(1), e03088. doi:10.1016/j.heliyon.2019.e03088 | es_ES |
dc.description.references | Marazzi, F., Bellucci, M., Rossi, S., Fornaroli, R., Ficara, E., & Mezzanotte, V. (2019). Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research, 39, 101430. doi:10.1016/j.algal.2019.101430 | es_ES |
dc.description.references | Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2013). Mathematical modelling of filtration in submerged anaerobic MBRs (SAnMBRs): Long-term validation. Journal of Membrane Science, 446, 303-309. doi:10.1016/j.memsci.2013.07.001 | es_ES |
dc.description.references | Zhang, X., Devanadera, M. C. E., Roddick, F. A., Fan, L., & Dalida, M. L. P. (2016). Impact of algal organic matter released from Microcystis aeruginosa and Chlorella sp. on the fouling of a ceramic microfiltration membrane. Water Research, 103, 391-400. doi:10.1016/j.watres.2016.07.061 | es_ES |
dc.description.references | Ozkan, A., & Berberoglu, H. (2013). Cell to substratum and cell to cell interactions of microalgae. Colloids and Surfaces B: Biointerfaces, 112, 302-309. doi:10.1016/j.colsurfb.2013.08.007 | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |