- -

Production of microalgal external organic matter in a Chlorella-dominated culture: influence of temperature and stress factors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Production of microalgal external organic matter in a Chlorella-dominated culture: influence of temperature and stress factors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gonzalez-Camejo, Josue es_ES
dc.contributor.author Paches Giner, Maria Aguas Vivas es_ES
dc.contributor.author Marín, A. es_ES
dc.contributor.author Jiménez Benítez, Antonio Luis es_ES
dc.contributor.author Seco, A. es_ES
dc.contributor.author Barat, Ramón es_ES
dc.date.accessioned 2020-12-17T04:33:51Z
dc.date.available 2020-12-17T04:33:51Z
dc.date.issued 2020-07-01 es_ES
dc.identifier.issn 2053-1400 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157306
dc.description.abstract [EN] Although microalgae are recognised to release external organic matter (EOM), little is known about this phenomenon in microalgae cultivation systems, especially on a large scale. A study on the effect of microalgae-stressing factors such as temperature, nutrient limitation and ammonium oxidising bacteria (AOB) competition in EOM production by microalgae was carried out. The results showed non-statistically significant differences in EOM production at constant temperatures of 25, 30 and 35 degrees C. However, when the temperature was raised from 25 to 35 degrees C for 4 h a day, polysaccharide production increased significantly, indicating microalgae stress. Nutrient limitation also seemed to increase EOM production. No significant differences were found in EOM production under lab conditions when the microalgae competed with AOB for ammonium uptake. However, when the EOM concentration was monitored during continuous outdoor operation of a membrane photobioreactor (MPBR) plant, nitrifying bacteria activity was likely to be responsible for the increase in EOM concentration in the culture. Other factors such as high temperatures, ammonium-depletion and low light intensities could also have induced cell deterioration and thus have influenced EOM production in the outdoor MPBR plant. Membrane fouling seemed to depend on the biomass concentration of the culture. However, under the operating conditions tested, the behaviour of fouling rate with respect to the EOM concentration was different depending on the initial membrane state. es_ES
dc.description.sponsorship This research work has been supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Projects CTM2014-54980-C2-1-R and CTM2014-54980-C2-2-R) jointly with the European Regional Development Fund (ERDF), both of which are gratefully acknowledged. This was also supported by the Spanish Ministry of Education, Culture and Sport via a pre-doctoral FPU fellowship to author J. Gonzalez-Camejo (FPU14/05082) es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Environmental Science: Water Research & Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Microalgae es_ES
dc.subject Extracellular organic matter es_ES
dc.subject Protein es_ES
dc.subject Polysaccharide es_ES
dc.subject Stress factor es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Production of microalgal external organic matter in a Chlorella-dominated culture: influence of temperature and stress factors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/d0ew00176g es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU14%2F05082/ES/FPU14%2F05082/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Gonzalez-Camejo, J.; Paches Giner, MAV.; Marín, A.; Jiménez Benítez, AL.; Seco, A.; Barat, R. (2020). Production of microalgal external organic matter in a Chlorella-dominated culture: influence of temperature and stress factors. Environmental Science: Water Research & Technology. (7):1-14. https://doi.org/10.1039/d0ew00176g es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/d0ew00176g es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\412334 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Puyol, D., Batstone, D. J., Hülsen, T., Astals, S., Peces, M., & Krömer, J. O. (2017). Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.02106 es_ES
dc.description.references Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049 es_ES
dc.description.references Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492 es_ES
dc.description.references Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2016). Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment. Journal of Environmental Management, 166, 45-54. doi:10.1016/j.jenvman.2015.10.004 es_ES
dc.description.references Stuckey, D. C. (2012). Recent developments in anaerobic membrane reactors. Bioresource Technology, 122, 137-148. doi:10.1016/j.biortech.2012.05.138 es_ES
dc.description.references Wallace, J., Champagne, P., & Hall, G. (2016). Time series relationships between chlorophyll-a, dissolved oxygen, and pH in three facultative wastewater stabilization ponds. Environmental Science: Water Research & Technology, 2(6), 1032-1040. doi:10.1039/c6ew00202a es_ES
dc.description.references Kang, D., Kim, K., Jang, Y., Moon, H., Ju, D., & Jahng, D. (2018). Nutrient removal and community structure of wastewater-borne algal-bacterial consortia grown in raw wastewater with various wavelengths of light. International Biodeterioration & Biodegradation, 126, 10-20. doi:10.1016/j.ibiod.2017.09.022 es_ES
dc.description.references Li, Y., Slouka, S. A., Henkanatte-Gedera, S. M., Nirmalakhandan, N., & Strathmann, T. J. (2019). Seasonal treatment and economic evaluation of an algal wastewater system for energy and nutrient recovery. Environmental Science: Water Research & Technology, 5(9), 1545-1557. doi:10.1039/c9ew00242a es_ES
dc.description.references Price, J. R., Keshani Langroodi, S., Lan, Y., Becker, J. M., Shieh, W. K., Rosen, G. L., & Sales, C. M. (2016). Emerging investigators series: untangling the microbial ecosystem and kinetics in a nitrogen removing photosynthetic high density bioreactor. Environmental Science: Water Research & Technology, 2(4), 705-716. doi:10.1039/c6ew00078a es_ES
dc.description.references González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. Journal of Environmental Management, 245, 76-85. doi:10.1016/j.jenvman.2019.05.010 es_ES
dc.description.references González-Camejo, J., Aparicio, S., Jiménez-Benítez, A., Pachés, M., Ruano, M. V., Borrás, L., … Seco, A. (2020). Improving membrane photobioreactor performance by reducing light path: operating conditions and key performance indicators. Water Research, 172, 115518. doi:10.1016/j.watres.2020.115518 es_ES
dc.description.references Guldhe, A., Kumari, S., Ramanna, L., Ramsundar, P., Singh, P., Rawat, I., & Bux, F. (2017). Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. Journal of Environmental Management, 203, 299-315. doi:10.1016/j.jenvman.2017.08.012 es_ES
dc.description.references Tenorio, R., Fedders, A. C., Strathmann, T. J., & Guest, J. S. (2017). Impact of growth phases on photochemically produced reactive species in the extracellular matrix of algal cultivation systems. Environmental Science: Water Research & Technology, 3(6), 1095-1108. doi:10.1039/c7ew00172j es_ES
dc.description.references Togarcheti, S. C., Mediboyina, M. kumar, Chauhan, V. S., Mukherji, S., Ravi, S., & Mudliar, S. N. (2017). Life cycle assessment of microalgae based biodiesel production to evaluate the impact of biomass productivity and energy source. Resources, Conservation and Recycling, 122, 286-294. doi:10.1016/j.resconrec.2017.01.008 es_ES
dc.description.references Zhang, Y., Kendall, A., & Yuan, J. (2014). A comparison of on-site nutrient and energy recycling technologies in algal oil production. Resources, Conservation and Recycling, 88, 13-20. doi:10.1016/j.resconrec.2014.04.011 es_ES
dc.description.references González-Camejo, J., Barat, R., Aguado, D., & Ferrer, J. (2020). Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor. Water Research, 169, 115238. doi:10.1016/j.watres.2019.115238 es_ES
dc.description.references Gupta, S., Pawar, S. B., & Pandey, R. A. (2019). Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Science of The Total Environment, 687, 1107-1126. doi:10.1016/j.scitotenv.2019.06.115 es_ES
dc.description.references Bilad, M. R., Azizo, A. S., Wirzal, M. D. H., Jia Jia, L., Putra, Z. A., Nordin, N. A. H. M., … Yusoff, A. R. M. (2018). Tackling membrane fouling in microalgae filtration using nylon 6,6 nanofiber membrane. Journal of Environmental Management, 223, 23-28. doi:10.1016/j.jenvman.2018.06.007 es_ES
dc.description.references Razzak, S. A., Ali, S. A. M., Hossain, M. M., & deLasa, H. (2017). Biological CO2 fixation with production of microalgae in wastewater – A review. Renewable and Sustainable Energy Reviews, 76, 379-390. doi:10.1016/j.rser.2017.02.038 es_ES
dc.description.references Gao, F., Cui, W., Xu, J.-P., Li, C., Jin, W.-H., & Yang, H.-L. (2019). Lipid accumulation properties of Chlorella vulgaris and Scenedesmus obliquus in membrane photobioreactor (MPBR) fed with secondary effluent from municipal wastewater treatment plant. Renewable Energy, 136, 671-676. doi:10.1016/j.renene.2019.01.038 es_ES
dc.description.references Fortunato, L., Lamprea, A. F., & Leiknes, T. (2020). Evaluation of membrane fouling mitigation strategies in an algal membrane photobioreactor (AMPBR) treating secondary wastewater effluent. Science of The Total Environment, 708, 134548. doi:10.1016/j.scitotenv.2019.134548 es_ES
dc.description.references Gong, H., Jin, Z., Xu, H., Yuan, Q., Zuo, J., Wu, J., & Wang, K. (2019). Enhanced membrane-based pre-concentration improves wastewater organic matter recovery: Pilot-scale performance and membrane fouling. Journal of Cleaner Production, 206, 307-314. doi:10.1016/j.jclepro.2018.09.209 es_ES
dc.description.references Luo, Y., Henderson, R. K., & Le-Clech, P. (2019). Characterisation of organic matter in membrane photobioreactors (MPBRs) and its impact on membrane performance. Algal Research, 44, 101682. doi:10.1016/j.algal.2019.101682 es_ES
dc.description.references Keyvan Hosseini, P., Pajoum Shariati, F., Delavari Amrei, H., & Heydarinasab, A. (2020). The influence of various orifice diameters on cake resistance and pore blocking resistance of a hybrid membrane photobioreactor (HMPBR). Separation and Purification Technology, 235, 116187. doi:10.1016/j.seppur.2019.116187 es_ES
dc.description.references Wang, L., Pan, B., Gao, Y., Li, C., Ye, J., Yang, L., … Zhang, X. (2019). Efficient membrane microalgal harvesting: Pilot-scale performance and techno-economic analysis. Journal of Cleaner Production, 218, 83-95. doi:10.1016/j.jclepro.2019.01.321 es_ES
dc.description.references Novoa, A. F., Fortunato, L., Rehman, Z. U., & Leiknes, T. (2020). Evaluating the effect of hydraulic retention time on fouling development and biomass characteristics in an algal membrane photobioreactor treating a secondary wastewater effluent. Bioresource Technology, 309, 123348. doi:10.1016/j.biortech.2020.123348 es_ES
dc.description.references Bin Liu, Qu, F., Liang, H., Gan, Z., Yu, H., Li, G., & Van der Bruggen, B. (2017). Algae-laden water treatment using ultrafiltration: Individual and combined fouling effects of cells, debris, extracellular and intracellular organic matter. Journal of Membrane Science, 528, 178-186. doi:10.1016/j.memsci.2017.01.032 es_ES
dc.description.references Robles, A., Ruano, M. V., Ribes, J., & Ferrer, J. (2013). Performance of industrial scale hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system at mesophilic and psychrophilic conditions. Separation and Purification Technology, 104, 290-296. doi:10.1016/j.seppur.2012.12.004 es_ES
dc.description.references Robles, A., Ruano, M. V., Ribes, J., & Ferrer, J. (2012). Sub-critical long-term operation of industrial scale hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system. Separation and Purification Technology, 100, 88-96. doi:10.1016/j.seppur.2012.09.010 es_ES
dc.description.references Robles, Á., Capson-Tojo, G., Gales, A., Viruela, A., Sialve, B., Seco, A., … Ferrer, J. (2020). Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale. Bioresource Technology, 301, 122672. doi:10.1016/j.biortech.2019.122672 es_ES
dc.description.references Porcelli, N., & Judd, S. (2010). Chemical cleaning of potable water membranes: A review. Separation and Purification Technology, 71(2), 137-143. doi:10.1016/j.seppur.2009.12.007 es_ES
dc.description.references Delattre, C., Pierre, G., Laroche, C., & Michaud, P. (2016). Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnology Advances, 34(7), 1159-1179. doi:10.1016/j.biotechadv.2016.08.001 es_ES
dc.description.references Sha, J., Lu, Z., Ye, J., Wang, G., Hu, Q., Chen, Y., & Zhang, X. (2019). The inhibition effect of recycled Scenedesmus acuminatus culture media: Influence of growth phase, inhibitor identification and removal. Algal Research, 42, 101612. doi:10.1016/j.algal.2019.101612 es_ES
dc.description.references Discart, V., Bilad, M. R., Marbelia, L., & Vankelecom, I. F. J. (2014). Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle. Bioresource Technology, 152, 321-328. doi:10.1016/j.biortech.2013.11.019 es_ES
dc.description.references Li, M., Zhu, W., Gao, L., & Lu, L. (2012). Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates. Journal of Applied Phycology, 25(4), 1023-1030. doi:10.1007/s10811-012-9937-7 es_ES
dc.description.references Barker, D. J., & Stuckey, D. C. (1999). A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research, 33(14), 3063-3082. doi:10.1016/s0043-1354(99)00022-6 es_ES
dc.description.references Jebali, A., Acién, F. G., Rodriguez Barradas, E., Olguín, E. J., Sayadi, S., & Molina Grima, E. (2018). Pilot-scale outdoor production of Scenedesmus sp. in raceways using flue gases and centrate from anaerobic digestion as the sole culture medium. Bioresource Technology, 262, 1-8. doi:10.1016/j.biortech.2018.04.057 es_ES
dc.description.references González-Camejo, J., Aparicio, S., Ruano, M. V., Borrás, L., Barat, R., & Ferrer, J. (2019). Effect of ambient temperature variations on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella. Bioresource Technology, 290, 121788. doi:10.1016/j.biortech.2019.121788 es_ES
dc.description.references Nagarajan, D., Lee, D.-J., Chen, C.-Y., & Chang, J.-S. (2020). Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Bioresource Technology, 302, 122817. doi:10.1016/j.biortech.2020.122817 es_ES
dc.description.references Kwon, G., Kim, H., Song, C., & Jahng, D. (2019). Co-culture of microalgae and enriched nitrifying bacteria for energy-efficient nitrification. Biochemical Engineering Journal, 152, 107385. doi:10.1016/j.bej.2019.107385 es_ES
dc.description.references Day, J. G., Gong, Y., & Hu, Q. (2017). Microzooplanktonic grazers – A potentially devastating threat to the commercial success of microalgal mass culture. Algal Research, 27, 356-365. doi:10.1016/j.algal.2017.08.024 es_ES
dc.description.references Qureshi, N., Annous, B. A., Ezeji, T. C., Karcher, P., & Maddox, I. S. (2005). Microbial Cell Factories, 4(1), 24. doi:10.1186/1475-2859-4-24 es_ES
dc.description.references González-Camejo, J., Serna-García, R., Viruela, A., Pachés, M., Durán, F., Robles, A., … Seco, A. (2017). Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment. Bioresource Technology, 244, 15-22. doi:10.1016/j.biortech.2017.07.126 es_ES
dc.description.references Rossi, S., Casagli, F., Mantovani, M., Mezzanotte, V., & Ficara, E. (2020). Selection of photosynthesis and respiration models to assess the effect of environmental conditions on mixed microalgae consortia grown on wastewater. Bioresource Technology, 305, 122995. doi:10.1016/j.biortech.2020.122995 es_ES
dc.description.references Luo, Y., Le-Clech, P., & Henderson, R. K. (2018). Assessment of membrane photobioreactor (MPBR) performance parameters and operating conditions. Water Research, 138, 169-180. doi:10.1016/j.watres.2018.03.050 es_ES
dc.description.references González-Camejo, J., Barat, R., Pachés, M., Murgui, M., Seco, A., & Ferrer, J. (2017). Wastewater nutrient removal in a mixed microalgae–bacteria culture: effect of light and temperature on the microalgae–bacteria competition. Environmental Technology, 39(4), 503-515. doi:10.1080/09593330.2017.1305001 es_ES
dc.description.references Krustok, I., Odlare, M., Truu, J., & Nehrenheim, E. (2016). Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake. Bioresource Technology, 202, 238-243. doi:10.1016/j.biortech.2015.12.020 es_ES
dc.description.references Ling, Y., Sun, L., Wang, S., Lin, C. S. K., Sun, Z., & Zhou, Z. (2019). Cultivation of oleaginous microalga Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production. Biochemical Engineering Journal, 148, 162-169. doi:10.1016/j.bej.2019.05.012 es_ES
dc.description.references DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017 es_ES
dc.description.references Peterson, G. L. (1979). Review of the folin phenol protein quantitation method of lowry, rosebrough, farr and randall. Analytical Biochemistry, 100(2), 201-220. doi:10.1016/0003-2697(79)90222-7 es_ES
dc.description.references APHA , Standard methods for the examination of water and wastewater, 21th. American Public Health Association , American Water Works Association, Water Environment Federation , Washington, USA , 2012 es_ES
dc.description.references Sheng, G.-P., Yu, H.-Q., & Li, X.-Y. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnology Advances, 28(6), 882-894. doi:10.1016/j.biotechadv.2010.08.001 es_ES
dc.description.references González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Preliminary data set to assess the performance of an outdoor membrane photobioreactor. Data in Brief, 27, 104599. doi:10.1016/j.dib.2019.104599 es_ES
dc.description.references Rossi, S., Bellucci, M., Marazzi, F., Mezzanotte, V., & Ficara, E. (2018). Activity assessment of microalgal-bacterial consortia based on respirometric tests. Water Science and Technology, 78(1), 207-215. doi:10.2166/wst.2018.078 es_ES
dc.description.references Lau, A. K. S., Bilad, M. R., Osman, N. B., Marbelia, L., Putra, Z. A., Nordin, N. A. H. M., … Khan, A. L. (2019). Sequencing batch membrane photobioreactor for simultaneous cultivation of aquaculture feed and polishing of real secondary effluent. Journal of Water Process Engineering, 29, 100779. doi:10.1016/j.jwpe.2019.100779 es_ES
dc.description.references Molinuevo-Salces, B., García-González, M. C., & González-Fernández, C. (2010). Performance comparison of two photobioreactors configurations (open and closed to the atmosphere) treating anaerobically degraded swine slurry. Bioresource Technology, 101(14), 5144-5149. doi:10.1016/j.biortech.2010.02.006 es_ES
dc.description.references Foladori, P., Petrini, S., & Andreottola, G. (2020). How suspended solids concentration affects nitrification rate in microalgal-bacterial photobioreactors without external aeration. Heliyon, 6(1), e03088. doi:10.1016/j.heliyon.2019.e03088 es_ES
dc.description.references Marazzi, F., Bellucci, M., Rossi, S., Fornaroli, R., Ficara, E., & Mezzanotte, V. (2019). Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research, 39, 101430. doi:10.1016/j.algal.2019.101430 es_ES
dc.description.references Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2013). Mathematical modelling of filtration in submerged anaerobic MBRs (SAnMBRs): Long-term validation. Journal of Membrane Science, 446, 303-309. doi:10.1016/j.memsci.2013.07.001 es_ES
dc.description.references Zhang, X., Devanadera, M. C. E., Roddick, F. A., Fan, L., & Dalida, M. L. P. (2016). Impact of algal organic matter released from Microcystis aeruginosa and Chlorella sp. on the fouling of a ceramic microfiltration membrane. Water Research, 103, 391-400. doi:10.1016/j.watres.2016.07.061 es_ES
dc.description.references Ozkan, A., & Berberoglu, H. (2013). Cell to substratum and cell to cell interactions of microalgae. Colloids and Surfaces B: Biointerfaces, 112, 302-309. doi:10.1016/j.colsurfb.2013.08.007 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem