- -

Discriminative ridge regression algorithm for adaptation in statistical machine translation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Discriminative ridge regression algorithm for adaptation in statistical machine translation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chinea-Ríos, Mara es_ES
dc.contributor.author Sanchis-Trilles, Germán es_ES
dc.contributor.author Casacuberta Nolla, Francisco es_ES
dc.date.accessioned 2020-12-19T04:32:01Z
dc.date.available 2020-12-19T04:32:01Z
dc.date.issued 2019-11 es_ES
dc.identifier.issn 1433-7541 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157503
dc.description.abstract [EN] We present a simple and reliable method for estimating the log-linear weights of a state-of-the-art machine translation system, which takes advantage of the method known as discriminative ridge regression (DRR). Since inappropriate weight estimations lead to a wide variability of translation quality results, reaching a reliable estimate for such weights is critical for machine translation research. For this reason, a variety of methods have been proposed to reach reasonable estimates. In this paper, we present an algorithmic description and empirical results proving that DRR is able to provide comparable translation quality when compared to state-of-the-art estimation methods [i.e. MERT and MIRA], with a reduction in computational cost. Moreover, the empirical results reported are coherent across different corpora and language pairs. es_ES
dc.description.sponsorship The research leading to these results were partially supported by projects CoMUN-HaT-TIN2015-70924-C2-1-R (MINECO/FEDER) and PROMETEO/2018/004. We also acknowledge NVIDIA for the donation of a GPU used in this work. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Pattern Analysis and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Statistical machine translation es_ES
dc.subject Log-linear model es_ES
dc.subject Discriminative ridge regression algorithm es_ES
dc.subject Log-linear weights es_ES
dc.subject Adaptation es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Discriminative ridge regression algorithm for adaptation in statistical machine translation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10044-018-0720-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F004/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-70924-C2-1-R/ES/CONTEXTO, MULTIMODALIDAD Y COLABORACION DEL USUARIO EN PROCESADO DE TEXTO MANUSCRITO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F121/ES/Deep learning for adaptative and multimodal interaction in pattern recognition/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Chinea-Ríos, M.; Sanchis-Trilles, G.; Casacuberta Nolla, F. (2019). Discriminative ridge regression algorithm for adaptation in statistical machine translation. Pattern Analysis and Applications. 22(4):1293-1305. https://doi.org/10.1007/s10044-018-0720-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10044-018-0720-5 es_ES
dc.description.upvformatpinicio 1293 es_ES
dc.description.upvformatpfin 1305 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\362954 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Barrachina S, Bender O, Casacuberta F, Civera J, Cubel E, Khadivi S, Lagarda A, Ney H, Tomás J, Vidal E et al (2009) Statistical approaches to computer-assisted translation. Comput Ling 35(1):3–28 es_ES
dc.description.references Bojar O, Buck C, Federmann C, Haddow B, Koehn P, Monz C, Post M, Specia L (eds) (2014) Proceedings of the ninth workshop on statistical machine translation. Association for Computational Linguistics es_ES
dc.description.references Brown PF, Pietra VJD, Pietra SAD, Mercer RL (1993) The mathematics of statistical machine translation: parameter estimation. Comput Ling 19:263–311 es_ES
dc.description.references Callison-Burch C, Koehn P, Monz C, Peterson K, Przybocki M, Zaidan OF (2010) Findings of the 2010 joint workshop on statistical machine translation and metrics for machine translation. In: Proceedings of the annual meeting of the association for computational linguistics, pp 17–53 es_ES
dc.description.references Chen B, Cherry C (2014) A systematic comparison of smoothing techniques for sentence-level bleu. In: Proceedings of the workshop on statistical machine translation, pp 362–367 es_ES
dc.description.references Cherry C, Foster G (2012) Batch tuning strategies for statistical machine translation. In: Proceedings of the North American chapter of the association for computational linguistics, pp 427–436 es_ES
dc.description.references Clark JH, Dyer C, Lavie A, Smith NA (2011) Better hypothesis testing for statistical machine translation: controlling for optimizer instability. In: Proceedings of the annual meeting of the association for computational linguistics, pp 176–181 es_ES
dc.description.references Crammer K, Dekel O, Keshet J, Shalev-Shwartz S, Singer Y (2006) Online passive-aggressive algorithms. J Mach Learn Res 7:551–585 es_ES
dc.description.references Hasler E, Haddow B, Koehn P (2011) Margin infused relaxed algorithm for moses. Prague Bull Math Ling 96:69–78 es_ES
dc.description.references Hopkins M, May J (2011) Tuning as ranking. In: Proceedings of the conference on empirical methods in natural language processing, pp 1352–1362 es_ES
dc.description.references Kneser R, Ney H (1995) Improved backing-off for m-gram language modeling. In: Proceedings of the international conference on acoustics, speech and signal processing, pp 181–184 es_ES
dc.description.references Koehn P (2005) Europarl: a parallel corpus for statistical machine translation. In: Proceedings of the machine translation summit, pp 79–86 es_ES
dc.description.references Koehn P (2010) Statistical machine translation. Cambridge University Press, Cambridge es_ES
dc.description.references Koehn P, Hoang H, Birch A, Callison-Burch C, Federico M, Bertoldi N, Cowan B, Shen W, Moran C, Zens R, Dyer C, Bojar O, Constantin A, Herbst E (2007) Moses: open source toolkit for statistical machine translation. In: Proceedings of the annual meeting of the association for computational linguistics, pp 177–180 es_ES
dc.description.references Lavie MDA (2014) Meteor universal: language specific translation evaluation for any target language. In: Proceedings of the annual meeting of the association for computational linguistics, pp 376–387 es_ES
dc.description.references Marie B, Max A (2015) Multi-pass decoding with complex feature guidance for statistical machine translation. In: Proceedings of the annual meeting of the association for computational linguistics, pp 554–559 es_ES
dc.description.references Martínez-Gómez P, Sanchis-Trilles G, Casacuberta F (2012) Online adaptation strategies for statistical machine translation in post-editing scenarios. Pattern Recogn 45(9):3193–3203 es_ES
dc.description.references Nakov P, Vogel S (2017) Robust tuning datasets for statistical machine translation. arXiv:1710.00346 es_ES
dc.description.references Neubig G, Watanabe T (2016) Optimization for statistical machine translation: a survey. Comput Ling 42(1):1–54 es_ES
dc.description.references Och FJ (2003) Minimum error rate training in statistical machine translation. In: Proceedings of the annual meeting of the association for computational linguistics, pp 160–167 es_ES
dc.description.references Och FJ, Ney H (2003) A systematic comparison of various statistical alignment models. Comput Ling 29:19–51 es_ES
dc.description.references Papineni K, Roukos S, Ward T, Zhu WJ (2002) Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the international conference on acoustics, speech and signal processing, pp 311–318 es_ES
dc.description.references Sanchis-Trilles G, Casacuberta F (2010) Log-linear weight optimisation via Bayesian adaptation in statistical machine translation. In: Proceedings of the annual meeting of the association for computational linguistics, pp 1077–1085 es_ES
dc.description.references Sanchis-Trilles G, Casacuberta F (2015) Improving translation quality stability using Bayesian predictive adaptation. Comput Speech Lang 34(1):1–17 es_ES
dc.description.references Snover M, Dorr B, Schwartz R, Micciulla L, Makhoul J (2006) A study of translation edit rate with targeted human annotation. In: Proceedings of the annual meeting of the association for machine translation in the Americas, pp 223–231 es_ES
dc.description.references Sokolov A, Yvon F (2011) Minimum error rate training semiring. In: Proceedings of the annual conference of the European association for machine translation, pp 241–248 es_ES
dc.description.references Stauffer C, Grimson WEL (2000) Learning patterns of activity using real-time tracking. Pattern Anal Mach Intell 22(8):747–757 es_ES
dc.description.references Stolcke A (2002) Srilm—an extensible language modeling toolkit. In: Proceedings of the international conference on spoken language processing, pp 901–904 es_ES
dc.description.references Tiedemann J (2009) News from opus—a collection of multilingual parallel corpora with tools and interfaces. In: Proceedings of the recent advances in natural language processing, pp 237–248 es_ES
dc.description.references Tiedemann J (2012) Parallel data, tools and interfaces in opus. In: Proceedings of the language resources and evaluation conference, pp 2214–2218 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem