Mostrar el registro sencillo del ítem
dc.contributor.author | Chinea-Ríos, Mara | es_ES |
dc.contributor.author | Sanchis-Trilles, Germán | es_ES |
dc.contributor.author | Casacuberta Nolla, Francisco | es_ES |
dc.date.accessioned | 2020-12-19T04:32:01Z | |
dc.date.available | 2020-12-19T04:32:01Z | |
dc.date.issued | 2019-11 | es_ES |
dc.identifier.issn | 1433-7541 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157503 | |
dc.description.abstract | [EN] We present a simple and reliable method for estimating the log-linear weights of a state-of-the-art machine translation system, which takes advantage of the method known as discriminative ridge regression (DRR). Since inappropriate weight estimations lead to a wide variability of translation quality results, reaching a reliable estimate for such weights is critical for machine translation research. For this reason, a variety of methods have been proposed to reach reasonable estimates. In this paper, we present an algorithmic description and empirical results proving that DRR is able to provide comparable translation quality when compared to state-of-the-art estimation methods [i.e. MERT and MIRA], with a reduction in computational cost. Moreover, the empirical results reported are coherent across different corpora and language pairs. | es_ES |
dc.description.sponsorship | The research leading to these results were partially supported by projects CoMUN-HaT-TIN2015-70924-C2-1-R (MINECO/FEDER) and PROMETEO/2018/004. We also acknowledge NVIDIA for the donation of a GPU used in this work. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Pattern Analysis and Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Statistical machine translation | es_ES |
dc.subject | Log-linear model | es_ES |
dc.subject | Discriminative ridge regression algorithm | es_ES |
dc.subject | Log-linear weights | es_ES |
dc.subject | Adaptation | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Discriminative ridge regression algorithm for adaptation in statistical machine translation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10044-018-0720-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F004/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2015-70924-C2-1-R/ES/CONTEXTO, MULTIMODALIDAD Y COLABORACION DEL USUARIO EN PROCESADO DE TEXTO MANUSCRITO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F121/ES/Deep learning for adaptative and multimodal interaction in pattern recognition/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Chinea-Ríos, M.; Sanchis-Trilles, G.; Casacuberta Nolla, F. (2019). Discriminative ridge regression algorithm for adaptation in statistical machine translation. Pattern Analysis and Applications. 22(4):1293-1305. https://doi.org/10.1007/s10044-018-0720-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10044-018-0720-5 | es_ES |
dc.description.upvformatpinicio | 1293 | es_ES |
dc.description.upvformatpfin | 1305 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\362954 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Barrachina S, Bender O, Casacuberta F, Civera J, Cubel E, Khadivi S, Lagarda A, Ney H, Tomás J, Vidal E et al (2009) Statistical approaches to computer-assisted translation. Comput Ling 35(1):3–28 | es_ES |
dc.description.references | Bojar O, Buck C, Federmann C, Haddow B, Koehn P, Monz C, Post M, Specia L (eds) (2014) Proceedings of the ninth workshop on statistical machine translation. Association for Computational Linguistics | es_ES |
dc.description.references | Brown PF, Pietra VJD, Pietra SAD, Mercer RL (1993) The mathematics of statistical machine translation: parameter estimation. Comput Ling 19:263–311 | es_ES |
dc.description.references | Callison-Burch C, Koehn P, Monz C, Peterson K, Przybocki M, Zaidan OF (2010) Findings of the 2010 joint workshop on statistical machine translation and metrics for machine translation. In: Proceedings of the annual meeting of the association for computational linguistics, pp 17–53 | es_ES |
dc.description.references | Chen B, Cherry C (2014) A systematic comparison of smoothing techniques for sentence-level bleu. In: Proceedings of the workshop on statistical machine translation, pp 362–367 | es_ES |
dc.description.references | Cherry C, Foster G (2012) Batch tuning strategies for statistical machine translation. In: Proceedings of the North American chapter of the association for computational linguistics, pp 427–436 | es_ES |
dc.description.references | Clark JH, Dyer C, Lavie A, Smith NA (2011) Better hypothesis testing for statistical machine translation: controlling for optimizer instability. In: Proceedings of the annual meeting of the association for computational linguistics, pp 176–181 | es_ES |
dc.description.references | Crammer K, Dekel O, Keshet J, Shalev-Shwartz S, Singer Y (2006) Online passive-aggressive algorithms. J Mach Learn Res 7:551–585 | es_ES |
dc.description.references | Hasler E, Haddow B, Koehn P (2011) Margin infused relaxed algorithm for moses. Prague Bull Math Ling 96:69–78 | es_ES |
dc.description.references | Hopkins M, May J (2011) Tuning as ranking. In: Proceedings of the conference on empirical methods in natural language processing, pp 1352–1362 | es_ES |
dc.description.references | Kneser R, Ney H (1995) Improved backing-off for m-gram language modeling. In: Proceedings of the international conference on acoustics, speech and signal processing, pp 181–184 | es_ES |
dc.description.references | Koehn P (2005) Europarl: a parallel corpus for statistical machine translation. In: Proceedings of the machine translation summit, pp 79–86 | es_ES |
dc.description.references | Koehn P (2010) Statistical machine translation. Cambridge University Press, Cambridge | es_ES |
dc.description.references | Koehn P, Hoang H, Birch A, Callison-Burch C, Federico M, Bertoldi N, Cowan B, Shen W, Moran C, Zens R, Dyer C, Bojar O, Constantin A, Herbst E (2007) Moses: open source toolkit for statistical machine translation. In: Proceedings of the annual meeting of the association for computational linguistics, pp 177–180 | es_ES |
dc.description.references | Lavie MDA (2014) Meteor universal: language specific translation evaluation for any target language. In: Proceedings of the annual meeting of the association for computational linguistics, pp 376–387 | es_ES |
dc.description.references | Marie B, Max A (2015) Multi-pass decoding with complex feature guidance for statistical machine translation. In: Proceedings of the annual meeting of the association for computational linguistics, pp 554–559 | es_ES |
dc.description.references | Martínez-Gómez P, Sanchis-Trilles G, Casacuberta F (2012) Online adaptation strategies for statistical machine translation in post-editing scenarios. Pattern Recogn 45(9):3193–3203 | es_ES |
dc.description.references | Nakov P, Vogel S (2017) Robust tuning datasets for statistical machine translation. arXiv:1710.00346 | es_ES |
dc.description.references | Neubig G, Watanabe T (2016) Optimization for statistical machine translation: a survey. Comput Ling 42(1):1–54 | es_ES |
dc.description.references | Och FJ (2003) Minimum error rate training in statistical machine translation. In: Proceedings of the annual meeting of the association for computational linguistics, pp 160–167 | es_ES |
dc.description.references | Och FJ, Ney H (2003) A systematic comparison of various statistical alignment models. Comput Ling 29:19–51 | es_ES |
dc.description.references | Papineni K, Roukos S, Ward T, Zhu WJ (2002) Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the international conference on acoustics, speech and signal processing, pp 311–318 | es_ES |
dc.description.references | Sanchis-Trilles G, Casacuberta F (2010) Log-linear weight optimisation via Bayesian adaptation in statistical machine translation. In: Proceedings of the annual meeting of the association for computational linguistics, pp 1077–1085 | es_ES |
dc.description.references | Sanchis-Trilles G, Casacuberta F (2015) Improving translation quality stability using Bayesian predictive adaptation. Comput Speech Lang 34(1):1–17 | es_ES |
dc.description.references | Snover M, Dorr B, Schwartz R, Micciulla L, Makhoul J (2006) A study of translation edit rate with targeted human annotation. In: Proceedings of the annual meeting of the association for machine translation in the Americas, pp 223–231 | es_ES |
dc.description.references | Sokolov A, Yvon F (2011) Minimum error rate training semiring. In: Proceedings of the annual conference of the European association for machine translation, pp 241–248 | es_ES |
dc.description.references | Stauffer C, Grimson WEL (2000) Learning patterns of activity using real-time tracking. Pattern Anal Mach Intell 22(8):747–757 | es_ES |
dc.description.references | Stolcke A (2002) Srilm—an extensible language modeling toolkit. In: Proceedings of the international conference on spoken language processing, pp 901–904 | es_ES |
dc.description.references | Tiedemann J (2009) News from opus—a collection of multilingual parallel corpora with tools and interfaces. In: Proceedings of the recent advances in natural language processing, pp 237–248 | es_ES |
dc.description.references | Tiedemann J (2012) Parallel data, tools and interfaces in opus. In: Proceedings of the language resources and evaluation conference, pp 2214–2218 | es_ES |