- -

End to End Delay and Energy Consumption in a Two Tier Cluster Hierarchical Wireless Sensor Networks

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

End to End Delay and Energy Consumption in a Two Tier Cluster Hierarchical Wireless Sensor Networks

Show simple item record

Files in this item

dc.contributor.author Casares-Giner, Vicente es_ES
dc.contributor.author Navas, Tatiana Inés es_ES
dc.contributor.author Smith Flórez, Dolly es_ES
dc.contributor.author Vargas Hernández, Tito Raúl es_ES
dc.date.accessioned 2020-12-19T04:32:17Z
dc.date.available 2020-12-19T04:32:17Z
dc.date.issued 2019-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157510
dc.description.abstract [EN] In this work it is considered a circular Wireless Sensor Networks (WSN) in a planar structure with uniform distribution of the sensors and with a two-level hierarchical topology. At the lower level, a cluster configuration is adopted in which the sensed information is transferred from sensor nodes to a cluster head (CH) using a random access protocol (RAP). At CH level, CHs transfer information, hop-by-hop, ring-by-ring, towards to the sink located at the center of the sensed area using TDMA as MAC protocol. A Markovian model to evaluate the end-to-end (E2E) transfer delay is formulated. In addition to other results such as the well know energy hole problem, the model reveals that for a given radial distance between the CH and the sink, the transfer delay depends on the angular orientation between them. For instance, when two rings of CHs are deployed in the WSN area, the E2E delay of data packets generated at ring 2 and at the ¿west¿ side of the sink, is 20% higher than the corresponding E2E delay of data packets generated at ring 2 and at the ¿east¿ side of the sink. This asymmetry can be alleviated by rotating from time to time the allocation of temporary slots to CHs in the TDMA communication. Also, the energy consumption is evaluated and the numerical results show that for a WSN with a small coverage area, say a radio of 100 m, the energy saving is more significant when a small number of rings are deployed, perhaps none (a single cluster in which the sink acts as a CH). Conversely, topologies with a large number of rings, say 4 or 5, offer a better energy performance when the service WSN covers a large area, say radial distances greater than 400 m. es_ES
dc.description.sponsorship The work of V. Casares-Giner (ITACA research institute) is partly supported by the Spanish national projects TIN2013-47272-C2-1-R and TEC2015-71932-REDT. The work of Tatiana Navas, Dolly Florez, and Tito R. Vargas H., and the collaboration between the two institutions, is supported by the Universidad Santo Tomas under Master Degree's research and academic projects. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Information es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Wireless sensor network es_ES
dc.subject Markov process es_ES
dc.subject Protocol es_ES
dc.subject Frame slotted ALOHA es_ES
dc.subject TDMA es_ES
dc.subject E2E delay es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title End to End Delay and Energy Consumption in a Two Tier Cluster Hierarchical Wireless Sensor Networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/info10040135 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-71932-REDT/ES/ELASTIC NETWORKS: NUEVOS PARADIGMAS DE REDES ELASTICAS PARA UN MUNDO RADICALMENTE BASADO EN CLOUD Y FOG COMPUTING/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-47272-C2-1-R/ES/PLATAFORMA DE SERVICIOS PARA CIUDADES INTELIGENTES CON REDES M2M DENSAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Casares-Giner, V.; Navas, TI.; Smith Flórez, D.; Vargas Hernández, TR. (2019). End to End Delay and Energy Consumption in a Two Tier Cluster Hierarchical Wireless Sensor Networks. Information. 10(4):1-29. https://doi.org/10.3390/info10040135 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/info10040135 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 29 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2078-2489 es_ES
dc.relation.pasarela S\384613 es_ES
dc.contributor.funder Universidad Santo Tomás es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Sari, A. (2015). Two-Tier Hierarchical Cluster Based Topology in Wireless Sensor Networks for Contention Based Protocol Suite. International Journal of Communications, Network and System Sciences, 08(03), 29-42. doi:10.4236/ijcns.2015.83004 es_ES
dc.description.references Haibo Zhang, & Hong Shen. (2009). Balancing Energy Consumption to Maximize Network Lifetime in Data-Gathering Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 20(10), 1526-1539. doi:10.1109/tpds.2008.252 es_ES
dc.description.references Wieselthier, J. E., Ephremides, A., & Michaels, L. A. (1989). An exact analysis and performance evaluation of framed ALOHA with capture. IEEE Transactions on Communications, 37(2), 125-137. doi:10.1109/26.20080 es_ES
dc.description.references Liu, W., Zhao, D., & Zhu, G. (2012). End-to-end delay and packet drop rate performance for a wireless sensor network with a cluster-tree topology. Wireless Communications and Mobile Computing, 14(7), 729-744. doi:10.1002/wcm.2230 es_ES
dc.description.references Alabdulmohsin, I., Hyadi, A., Afify, L., & Shihada, B. (2014). End-to-end delay analysis in wireless sensor networks with service vacation. 2014 IEEE Wireless Communications and Networking Conference (WCNC). doi:10.1109/wcnc.2014.6952872 es_ES
dc.description.references Park, J., Lee, S., & Yoo, S. (2015). Time slot assignment for convergecast in wireless sensor networks. Journal of Parallel and Distributed Computing, 83, 70-82. doi:10.1016/j.jpdc.2015.05.004 es_ES
dc.description.references Yang, X., Wang, L., Xie, J., & Zhang, Z. (2018). Energy Efficiency TDMA/CSMA Hybrid Protocol with Power Control for WSN. Wireless Communications and Mobile Computing, 2018, 1-7. doi:10.1155/2018/4168354 es_ES
dc.description.references Sgora, A., Vergados, D. J., & Vergados, D. D. (2015). A Survey of TDMA Scheduling Schemes in Wireless Multihop Networks. ACM Computing Surveys, 47(3), 1-39. doi:10.1145/2677955 es_ES
dc.description.references Martin, E., Liu, L., Covington, M., Pesti, P., & Weber, M. (2010). Positioning Technologies in Location-Based Services. Location-Based Services Handbook, 1-45. doi:10.1201/9781420071986-c1 es_ES
dc.description.references PAL, A. (2010). Localization Algorithms in Wireless Sensor Networks: Current Approaches and Future Challenges. Network Protocols and Algorithms, 2(1). doi:10.5296/npa.v2i1.279 es_ES
dc.description.references Kusdaryono, A., & Lee, K.-O. (2011). A Clustering Protocol with Mode Selection for Wireless Sensor Network. Journal of Information Processing Systems, 7(1), 29-42. doi:10.3745/jips.2011.7.1.029 es_ES
dc.description.references Donald, V. H. M. (1979). Advanced Mobile Phone Service: The Cellular Concept. Bell System Technical Journal, 58(1), 15-41. doi:10.1002/j.1538-7305.1979.tb02209.x es_ES
dc.description.references Casares-Giner, V., Wuchner, P., Pacheco-Paramo, D., & de Meer, H. (2012). Combined contention and TDMA-based communication in wireless sensor networks. Proceedings of the 8th Euro-NF Conference on Next Generation Internet NGI 2012. doi:10.1109/ngi.2012.6252158 es_ES
dc.description.references Ranganathan, P., & Nygard, K. (2010). Time Synchronization in Wireless Sensor Networks: A Survey. International Journal of UbiComp, 1(2), 92-102. doi:10.5121/iju.2010.1206 es_ES
dc.description.references Sahoo, A., & Chilukuri, S. (2010). DGRAM: A Delay Guaranteed Routing and MAC Protocol for Wireless Sensor Networks. IEEE Transactions on Mobile Computing, 9(10), 1407-1423. doi:10.1109/tmc.2010.107 es_ES
dc.description.references Wu, Y.-C., Chaudhari, Q., & Serpedin, E. (2011). Clock Synchronization of Wireless Sensor Networks. IEEE Signal Processing Magazine, 28(1), 124-138. doi:10.1109/msp.2010.938757 es_ES
dc.description.references Casares-Giner, V., Sempere-Payá, V., & Todolí-Ferrandis, D. (2014). Framed ALOHA Protocol with FIFO-Blocking and LIFO-Push out Discipline. Network Protocols and Algorithms, 6(3), 82. doi:10.5296/npa.v6i3.5557 es_ES
dc.description.references Tello-Oquendo, L., Pla, V., Leyva-Mayorga, I., Martinez-Bauset, J., Casares-Giner, V., & Guijarro, L. (2019). Efficient Random Access Channel Evaluation and Load Estimation in LTE-A With Massive MTC. IEEE Transactions on Vehicular Technology, 68(2), 1998-2002. doi:10.1109/tvt.2018.2885333 es_ES
dc.description.references Adan, I. J. B. F., van Leeuwaarden, J. S. H., & Winands, E. M. M. (2006). On the application of Rouché’s theorem in queueing theory. Operations Research Letters, 34(3), 355-360. doi:10.1016/j.orl.2005.05.012 es_ES
dc.description.references Casares-Giner, V., Martinez-Bauset, J., & Portillo, C. (2019). Performance evaluation of framed slotted ALOHA with reservation packets and succesive interference cancelation for M2M networks. Computer Networks, 155, 15-30. doi:10.1016/j.comnet.2019.02.021 es_ES


This item appears in the following Collection(s)

Show simple item record