Mostrar el registro sencillo del ítem
dc.contributor.author | González Albuixech, Vicente Francisco | es_ES |
dc.contributor.author | Rodríguez-Millán, M. | es_ES |
dc.contributor.author | Ito, T. | es_ES |
dc.contributor.author | Loya, J. A. | es_ES |
dc.contributor.author | Miguélez, M. H. | es_ES |
dc.date.accessioned | 2020-12-22T04:32:26Z | |
dc.date.available | 2020-12-22T04:32:26Z | |
dc.date.issued | 2019-06 | es_ES |
dc.identifier.issn | 1056-7895 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157580 | |
dc.description.abstract | [EN] The exigent requirements for personal protections in terms of energy absorption and ergonomics have led to increasing interest in bioinspired protections. This work focuses on the numerical analysis of ballistic behavior of different bioinspired geometries under impact loadings. Ceramic armors based on ganoid fish scales (the type exhibited by gars, bichirs and reedfishes), placoid fish scales (characterizing sharks and rays) and armadillo natural protection have been considered. Different impact conditions are studied, including perpendicular and oblique impacts to surface protection, different yaw angle, and multiple impacts. Main conclusion is related to the improved efficiency of modular armors against multiple shots exhibiting more localized damage and crack arrest properties. Moreover, its potential ergonomic is a promising characteristic justifying a deeper study. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work has been carried out within the framework of the research program Juan de la Cierva Incorporacion 2015, and research projects DPI2017-88166-R, and RTC-2015-3887-8 of FEDER program financed by the Ministerio de Economia, Industria y Competitividad of Spain. The support of the Generalitat Valenciana, Programme PROMETEO 2016/007 is also acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Damage Mechanics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Numerical analysis | es_ES |
dc.subject | Bioinspired amors | es_ES |
dc.subject | Impact loadings | es_ES |
dc.subject | Damage | es_ES |
dc.subject | Ceramic protections | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Numerical analysis for design of bioinspired ceramic modular armors for ballistic protections | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1056789518795203 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTC-2015-3887-8A28030062MADRID/ES/DISEÑO AVANZADO Y FABRICACIÓN DE PROTECCIONES PERSONALES INTEGRALES DE USO MILITAR Y PARA FUERZAS Y CUERPOS DE SEGURIDAD DEL ESTADO (PROTEC_DAF)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-88166-R/ES/DISEÑO AVANZADO DE PROTECCIONES PERSONALES Y SU INTERACCION CON EL CUERPO HUMANO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | González Albuixech, VF.; Rodríguez-Millán, M.; Ito, T.; Loya, JA.; Miguélez, MH. (2019). Numerical analysis for design of bioinspired ceramic modular armors for ballistic protections. International Journal of Damage Mechanics. 28(6):815-837. https://doi.org/10.1177/1056789518795203 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1056789518795203 | es_ES |
dc.description.upvformatpinicio | 815 | es_ES |
dc.description.upvformatpfin | 837 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 28 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\377213 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Chen, I. H., Kiang, J. H., Correa, V., Lopez, M. I., Chen, P.-Y., McKittrick, J., & Meyers, M. A. (2011). Armadillo armor: Mechanical testing and micro-structural evaluation. Journal of the Mechanical Behavior of Biomedical Materials, 4(5), 713-722. doi:10.1016/j.jmbbm.2010.12.013 | es_ES |
dc.description.references | Chintapalli, R. K., Mirkhalaf, M., Dastjerdi, A. K., & Barthelat, F. (2014). Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms. Bioinspiration & Biomimetics, 9(3), 036005. doi:10.1088/1748-3182/9/3/036005 | es_ES |
dc.description.references | Deka, L. J., Bartus, S. D., & Vaidya, U. K. (2009). Multi-site impact response of S2-glass/epoxy composite laminates. Composites Science and Technology, 69(6), 725-735. doi:10.1016/j.compscitech.2008.03.002 | es_ES |
dc.description.references | Duro-Royo, J., Zolotovsky, K., Mogas-Soldevila, L., Varshney, S., Oxman, N., Boyce, M. C., & Ortiz, C. (2015). MetaMesh: A hierarchical computational model for design and fabrication of biomimetic armored surfaces. Computer-Aided Design, 60, 14-27. doi:10.1016/j.cad.2014.05.005 | es_ES |
dc.description.references | Flores-Johnson, E. A., Shen, L., Guiamatsia, I., & Nguyen, G. D. (2014). Numerical investigation of the impact behaviour of bioinspired nacre-like aluminium composite plates. Composites Science and Technology, 96, 13-22. doi:10.1016/j.compscitech.2014.03.001 | es_ES |
dc.description.references | Grujicic, M., Pandurangan, B., & Coutris, N. (2011). A Computational Investigation of the Multi-Hit Ballistic-Protection Performance of Laminated Transparent-armor Systems. Journal of Materials Engineering and Performance, 21(6), 837-848. doi:10.1007/s11665-011-0004-3 | es_ES |
dc.description.references | Grunenfelder, L. K., Suksangpanya, N., Salinas, C., Milliron, G., Yaraghi, N., Herrera, S., … Kisailus, D. (2014). Bio-inspired impact-resistant composites. Acta Biomaterialia, 10(9), 3997-4008. doi:10.1016/j.actbio.2014.03.022 | es_ES |
dc.description.references | Klasztorny, M., & Świerczewski, M. (2015). NUMERICAL MODELLING AND VALIDATION OF 12.7 MM FSP IMPACT INTO ALFC SHIELD – ARMOX 500T STEEL PLATE SYSTEM. Journal of KONES. Powertrain and Transport, 19(4), 291-299. doi:10.5604/12314005.1138463 | es_ES |
dc.description.references | Liu, P., Zhu, D., Yao, Y., Wang, J., & Bui, T. Q. (2016). Numerical simulation of ballistic impact behavior of bio-inspired scale-like protection system. Materials & Design, 99, 201-210. doi:10.1016/j.matdes.2016.03.040 | es_ES |
dc.description.references | Morka, A., & Nowak, J. (2015). NUMERICAL ANALYSES OF CERAMIC/METAL BALLISTIC PANELS SUBJECTED TO PROJECTILE IMPACT. Journal of KONES. Powertrain and Transport, 19(4), 465-472. doi:10.5604/12314005.1138618 | es_ES |
dc.description.references | Pandya, K., Kumar, C. V. S., Nair, N., Patil, P., & Naik, N. (2014). Analytical and experimental studies on ballistic impact behavior of 2D woven fabric composites. International Journal of Damage Mechanics, 24(4), 471-511. doi:10.1177/1056789514531440 | es_ES |
dc.description.references | Poniżnik, Z., Nowak, Z., & Basista, M. (2015). Numerical modeling of deformation and fracture of reinforcing fibers in ceramic–metal composites. International Journal of Damage Mechanics, 26(5), 711-734. doi:10.1177/1056789515611945 | es_ES |
dc.description.references | Porter, M. M., Ravikumar, N., Barthelat, F., & Martini, R. (2017). 3D-printing and mechanics of bio-inspired articulated and multi-material structures. Journal of the Mechanical Behavior of Biomedical Materials, 73, 114-126. doi:10.1016/j.jmbbm.2016.12.016 | es_ES |
dc.description.references | Reaugh, J. E., Holt, A. C., Welkins, M. L., Cunningham, B. J., Hord, B. L., & Kusubov, A. S. (1999). Impact studies of five ceramic materials and pyrex. International Journal of Impact Engineering, 23(1), 771-782. doi:10.1016/s0734-743x(99)00121-9 | es_ES |
dc.description.references | Rostamiyan, Y., & Ferasat, A. (2016). High-speed impact and mechanical strength of ZrO2/polycarbonate nanocomposite. International Journal of Damage Mechanics, 26(7), 989-1002. doi:10.1177/1056789516644312 | es_ES |
dc.description.references | Russell, B. P. (2014). Multi-hit ballistic damage characterisation of 304 stainless steel plates with finite elements. Materials & Design, 58, 252-264. doi:10.1016/j.matdes.2014.01.074 | es_ES |
dc.description.references | Serjouei, A., Chi, R., Sridhar, I., & Tan, G. E. B. (2015). Empirical Ballistic Limit Velocity Model for Bi-Layer Ceramic–Metal Armor. International Journal of Protective Structures, 6(3), 509-527. doi:10.1260/2041-4196.6.3.509 | es_ES |
dc.description.references | Shaktivesh, Nair, N., & Naik, N. (2014). Ballistic impact behavior of 2D plain weave fabric targets with multiple layers: Analytical formulation. International Journal of Damage Mechanics, 24(1), 116-150. doi:10.1177/1056789514524074 | es_ES |
dc.description.references | Yang, W., Chen, I. H., Gludovatz, B., Zimmermann, E. A., Ritchie, R. O., & Meyers, M. A. (2012). Natural Flexible Dermal Armor. Advanced Materials, 25(1), 31-48. doi:10.1002/adma.201202713 | es_ES |