- -

Reference database and performance evaluation of methods for extraction of atrial fibrillatory waves in the ECG

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reference database and performance evaluation of methods for extraction of atrial fibrillatory waves in the ECG

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alcaraz, Raul es_ES
dc.contributor.author SORNMO, LEIF es_ES
dc.contributor.author Rieta, J J es_ES
dc.date.accessioned 2020-12-22T04:32:39Z
dc.date.available 2020-12-22T04:32:39Z
dc.date.issued 2019-07 es_ES
dc.identifier.issn 0967-3334 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157582
dc.description.abstract [EN] Objective: This study proposes a reference database, composed of a large number of simulated ECG signals in atrial fibrillation (AF), for investigating the performance of methods for extraction of atrial fibrillatory waves (f -waves). Approach: The simulated signals are produced using a recently published and validated model of 12-lead ECGs in AF. The database is composed of eight signal sets together accounting for a wide range of characteristics known to represent major challenges in f -wave extraction, including high heart rates, high morphological QRST variability, and the presence of ventricular premature beats. Each set contains 30 5 min signals with different f -wave amplitudes. The database is used for the purpose of investigating the statistical association between different indices, designed for use with either real or simulated signals. Main results: Using the database, available at the PhysioNet repository of physiological signals, the performance indices unnormalized ventricular residue (uVR), designed for real signals, and the root mean square error, designed for simulated signals, were found to exhibit the strongest association, leading to the recommendation that uVR should be used when characterizing performance in real signals. Significance: The proposed database facilitates comparison of the performance of different f -wave extraction methods and makes it possible to express performance in terms of the error between simulated and extracted f -wave signals. es_ES
dc.description.sponsorship This work was supported by project DPI2017-83952-C3 of the Spanish Ministry of Economy, Industry and Competitiveness, project SBPLY/17/180501/000411 of the Junta de Comunidades de Castilla-La Mancha, Grant 'Jose Castillejo' (CAS17/00436) from the Spanish Ministry of Education, Culture and Sport, Grant No. BEST/2017/028 from the Education, Research, Culture and Sports Department of Generalitat Valenciana, European Regional Development Fund, and Grant No. 03382/2016 from the Swedish Research Council. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Physiological Measurement es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Fibrillatory wave extraction es_ES
dc.subject Reference ECG database es_ES
dc.subject Performance evaluation es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Reference database and performance evaluation of methods for extraction of atrial fibrillatory waves in the ECG es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1361-6579/ab2b17 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000411/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//CAS17%2F00436/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//BEST%2F2017%2F028/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/VR//03382%2F2016/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Alcaraz, R.; Sornmo, L.; Rieta, JJ. (2019). Reference database and performance evaluation of methods for extraction of atrial fibrillatory waves in the ECG. Physiological Measurement. 40(7):1-11. https://doi.org/10.1088/1361-6579/ab2b17 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/1361-6579/ab2b17 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 40 es_ES
dc.description.issue 7 es_ES
dc.identifier.pmid 31216525 es_ES
dc.relation.pasarela S\411762 es_ES
dc.contributor.funder Swedish Research Council es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Consejería de Educación, Cultura y Deportes, Junta de Comunidades de Castilla-La Mancha es_ES
dc.description.references Chugh, S. S., Roth, G. A., Gillum, R. F., & Mensah, G. A. (2014). Global Burden of Atrial Fibrillation in Developed and Developing Nations. Global Heart, 9(1), 113. doi:10.1016/j.gheart.2014.01.004 es_ES
dc.description.references Colilla, S., Crow, A., Petkun, W., Singer, D. E., Simon, T., & Liu, X. (2013). Estimates of Current and Future Incidence and Prevalence of Atrial Fibrillation in the U.S. Adult Population. The American Journal of Cardiology, 112(8), 1142-1147. doi:10.1016/j.amjcard.2013.05.063 es_ES
dc.description.references Cuculich, P. S., Wang, Y., Lindsay, B. D., Faddis, M. N., Schuessler, R. B., Damiano, R. J., … Rudy, Y. (2010). Noninvasive Characterization of Epicardial Activation in Humans With Diverse Atrial Fibrillation Patterns. Circulation, 122(14), 1364-1372. doi:10.1161/circulationaha.110.945709 es_ES
dc.description.references Dai, H., Jiang, S., & Li, Y. (2013). Atrial activity extraction from single lead ECG recordings: Evaluation of two novel methods. Computers in Biology and Medicine, 43(3), 176-183. doi:10.1016/j.compbiomed.2012.12.005 es_ES
dc.description.references Donoso, F. I., Figueroa, R. L., Lecannelier, E. A., Pino, E. J., & Rojas, A. J. (2013). Atrial activity selection for atrial fibrillation ECG recordings. Computers in Biology and Medicine, 43(10), 1628-1636. doi:10.1016/j.compbiomed.2013.08.002 es_ES
dc.description.references Fauchier, L., Villejoubert, O., Clementy, N., Bernard, A., Pierre, B., Angoulvant, D., … Lip, G. Y. H. (2016). Causes of Death and Influencing Factors in Patients with Atrial Fibrillation. The American Journal of Medicine, 129(12), 1278-1287. doi:10.1016/j.amjmed.2016.06.045 es_ES
dc.description.references Fujiki, A., Sakabe, M., Nishida, K., Mizumaki, K., & Inoue, H. (2003). Role of Fibrillation Cycle Length in Spontaneous and Drug-Induced Termination of Human Atrial Fibrillation. Circulation Journal, 67(5), 391-395. doi:10.1253/circj.67.391 es_ES
dc.description.references Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215 es_ES
dc.description.references Roonizi, E. K., & Sassi, R. (2017). An Extended Bayesian Framework for Atrial and Ventricular Activity Separation in Atrial Fibrillation. IEEE Journal of Biomedical and Health Informatics, 21(6), 1573-1580. doi:10.1109/jbhi.2016.2625338 es_ES
dc.description.references Krijthe, B. P., Kunst, A., Benjamin, E. J., Lip, G. Y. H., Franco, O. H., Hofman, A., … Heeringa, J. (2013). Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. European Heart Journal, 34(35), 2746-2751. doi:10.1093/eurheartj/eht280 es_ES
dc.description.references Langley, P. (2015). Wavelet Entropy as a Measure of Ventricular Beat Suppression from the Electrocardiogram in Atrial Fibrillation. Entropy, 17(12), 6397-6411. doi:10.3390/e17096397 es_ES
dc.description.references Langley, P., Rieta, J. J., Stridh, M., Millet, J., Sornmo, L., & Murray, A. (2006). Comparison of Atrial Signal Extraction Algorithms in 12-Lead ECGs With Atrial Fibrillation. IEEE Transactions on Biomedical Engineering, 53(2), 343-346. doi:10.1109/tbme.2005.862567 es_ES
dc.description.references Lee, J., Song, M., Shin, D., & Lee, K. (2012). Event synchronous adaptive filter based atrial activity estimation in single-lead atrial fibrillation electrocardiograms. Medical & Biological Engineering & Computing, 50(8), 801-811. doi:10.1007/s11517-012-0931-7 es_ES
dc.description.references Lemay, M., Vesin, J.-M., van Oosterom, A., Jacquemet, V., & Kappenberger, L. (2007). Cancellation of Ventricular Activity in the ECG: Evaluation of Novel and Existing Methods. IEEE Transactions on Biomedical Engineering, 54(3), 542-546. doi:10.1109/tbme.2006.888835 es_ES
dc.description.references Llinares, R., Igual, J., & Miró-Borrás, J. (2010). A fixed point algorithm for extracting the atrial activity in the frequency domain. Computers in Biology and Medicine, 40(11-12), 943-949. doi:10.1016/j.compbiomed.2010.10.006 es_ES
dc.description.references Malik, J., Reed, N., Wang, C.-L., & Wu, H. (2017). Single-lead f-wave extraction using diffusion geometry. Physiological Measurement, 38(7), 1310-1334. doi:10.1088/1361-6579/aa707c es_ES
dc.description.references Mateo, J., & Joaquín Rieta, J. (2013). Radial basis function neural networks applied to efficient QRST cancellation in atrial fibrillation. Computers in Biology and Medicine, 43(2), 154-163. doi:10.1016/j.compbiomed.2012.11.007 es_ES
dc.description.references McSharry, P. E., Clifford, G. D., Tarassenko, L., & Smith, L. A. (2003). A dynamical model for generating synthetic electrocardiogram signals. IEEE Transactions on Biomedical Engineering, 50(3), 289-294. doi:10.1109/tbme.2003.808805 es_ES
dc.description.references Nault, I., Lellouche, N., Matsuo, S., Knecht, S., Wright, M., Lim, K.-T., … Haïssaguerre, M. (2009). Clinical value of fibrillatory wave amplitude on surface ECG in patients with persistent atrial fibrillation. Journal of Interventional Cardiac Electrophysiology, 26(1), 11-19. doi:10.1007/s10840-009-9398-3 es_ES
dc.description.references Petrenas, A., Marozas, V., Sološenko, A., Kubilius, R., Skibarkiene, J., Oster, J., & Sörnmo, L. (2017). Electrocardiogram modeling during paroxysmal atrial fibrillation: application to the detection of brief episodes. Physiological Measurement, 38(11), 2058-2080. doi:10.1088/1361-6579/aa9153 es_ES
dc.description.references Petrenas, A., Marozas, V., Sornmo, L., & Lukosevicius, A. (2012). An Echo State Neural Network for QRST Cancellation During Atrial Fibrillation. IEEE Transactions on Biomedical Engineering, 59(10), 2950-2957. doi:10.1109/tbme.2012.2212895 es_ES
dc.description.references Platonov, P. G., Corino, V. D. A., Seifert, M., Holmqvist, F., & Sornmo, L. (2014). Atrial fibrillatory rate in the clinical context: natural course and prediction of intervention outcome. Europace, 16(suppl 4), iv110-iv119. doi:10.1093/europace/euu249 es_ES
dc.description.references Sassi, R., Corino, V. D. A., & Mainardi, L. T. (2009). Analysis of Surface Atrial Signals: Time Series with Missing Data? Annals of Biomedical Engineering, 37(10), 2082-2092. doi:10.1007/s10439-009-9757-3 es_ES
dc.description.references Schotten, U., Dobrev, D., Platonov, P. G., Kottkamp, H., & Hindricks, G. (2016). Current controversies in determining the main mechanisms of atrial fibrillation. Journal of Internal Medicine, 279(5), 428-438. doi:10.1111/joim.12492 es_ES
dc.description.references Shah, D., Yamane, T., Choi, K.-J., & Haissaguerre, M. (2004). QRS Subtraction and the ECG Analysis of Atrial Ectopics. Annals of Noninvasive Electrocardiology, 9(4), 389-398. doi:10.1111/j.1542-474x.2004.94555.x es_ES
dc.description.references Sörnmo, L., Alcaraz, R., Laguna, P., & Rieta, J. J. (2018). Characterization of f Waves. Series in BioEngineering, 221-279. doi:10.1007/978-3-319-68515-1_6 es_ES
dc.description.references Sörnmo, L., Petrėnas, A., Laguna, P., & Marozas, V. (2018). Extraction of f Waves. Series in BioEngineering, 137-220. doi:10.1007/978-3-319-68515-1_5 es_ES
dc.description.references Sterling, M., Huang, D. T., & Ghoraani, B. (2015). Developing a New Computer-Aided Clinical Decision Support System for Prediction of Successful Postcardioversion Patients with Persistent Atrial Fibrillation. Computational and Mathematical Methods in Medicine, 2015, 1-10. doi:10.1155/2015/527815 es_ES
dc.description.references Stridh, M., & Sommo, L. (2001). Spatiotemporal QRST cancellation techniques for analysis of atrial fibrillation. IEEE Transactions on Biomedical Engineering, 48(1), 105-111. doi:10.1109/10.900266 es_ES
dc.description.references Stridh, M., Sornmo, L., Meurling, C. J., & Olsson, S. B. (2004). Sequential Characterization of Atrial Tachyarrhythmias Based on ECG Time-Frequency Analysis. IEEE Transactions on Biomedical Engineering, 51(1), 100-114. doi:10.1109/tbme.2003.820331 es_ES
dc.description.references Wang, Y., & Jiang, Y. (2008). ISAR Imaging of Rotating Target with Equal Changing Acceleration Based on the Cubic Phase Function. EURASIP Journal on Advances in Signal Processing, 2008, 1-5. doi:10.1155/2008/491382 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem