- -

A multi-scale and multi-physics simulation methodology with the state-of-the-art tools for safety analysis in light water reactors applied to a turbine trip scenario (PART I)

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A multi-scale and multi-physics simulation methodology with the state-of-the-art tools for safety analysis in light water reactors applied to a turbine trip scenario (PART I)

Show simple item record

Files in this item

dc.contributor.author Hidalga-García-Bermejo, Patricio es_ES
dc.contributor.author Abarca Giménez, Agustín es_ES
dc.contributor.author Miró Herrero, Rafael es_ES
dc.contributor.author SEKHRI, ABDELKRIM es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.date.accessioned 2020-12-22T04:32:52Z
dc.date.available 2020-12-22T04:32:52Z
dc.date.issued 2019-08-15 es_ES
dc.identifier.issn 0029-5493 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157585
dc.description.abstract [EN] The simulation of transient events is a requirement in the evaluation of the safety of Nuclear Power Plants. The Nuclear Authority request the operators to report the prediction of the evolution of the corresponding safety variables using simulation codes and methodologies that have proved to be validated against real data, whether experiments or plant measurements. Moreover, these simulation codes are used in the engineering work that a Nuclear Power Plant needs for planning a competitive and safe operation strategy. The available resources in simulation tools make possible complex analysis that can be used to predict realistic results. The consequence is the opportunity of making a safe and cost-efficient evaluation of the safety margins. Operators can use these tools for licensing to the Nuclear Authority and for calculation support of the operation of the reactor in whichever considered case. This paper presents a methodology that takes advantage of different simulation tools to join the capabilities in the Best Estimate (BE) simulation of transients for Light Water Reactors. This methodology works in different steps to account all the physics using the proper scale in a multi-physics and multi-scale approach. An automatic tool manages the data pre- and post-processing the corresponding input and output files. The purpose is to simulate the transient case in a coarse mesh and generate the boundary conditions for a simulation in more detailed scale with a finer mesh in the next step. Therefore, this methodology works generating the corresponding nodal cross section data to be used in coupled 3D thermal-hydraulics and neutron kinetics simulations run with system codes. A channel-by-channel core model is used in order to identify the critical fuel channel. Finally, the boundary conditions of the critical fuel channel are loaded in a pin-by-pin thermal-hydraulic model to perform the definitive Safety Analysis of the target variable, that is selected by the user. The methodology presented in this paper, is applied to a real fast transient case, a Turbine Trip event of fuel cycle 18 in Kernkraftwerk Leibstadt, KKL. The results of each step of this methodology have been validated against the available plant data and the selected target safety variable, the Critical Power Ratio at pin level, has been code-to-code verified. The results show good agreement proving the effectivity of this methodology. es_ES
dc.description.sponsorship The authors of this paper acknowledge the interest and economical and technical support of KKL to undertake the development of this project. This acknowledgement is extended to the collaboration of KKL in the research tasks by sharing plant measurements to validate the methodology and to use their software resources to generate useful data for the code-to-code verification. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Nuclear Engineering and Design es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Simulation methodology es_ES
dc.subject LWR safety analysis es_ES
dc.subject Turbine trip es_ES
dc.subject Trace es_ES
dc.subject Parcs es_ES
dc.subject Cobra-tf es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title A multi-scale and multi-physics simulation methodology with the state-of-the-art tools for safety analysis in light water reactors applied to a turbine trip scenario (PART I) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.nucengdes.2019.05.008 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2012-34585/ES/Desarrollo de una plataforma multifísica de altas prestaciones para simulaciones Termohidráulico-Neutrónicas en ingeniería nuclear/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Hidalga-García-Bermejo, P.; Abarca Giménez, A.; Miró Herrero, R.; Sekhri, A.; Verdú Martín, GJ. (2019). A multi-scale and multi-physics simulation methodology with the state-of-the-art tools for safety analysis in light water reactors applied to a turbine trip scenario (PART I). Nuclear Engineering and Design. 350:195-204. https://doi.org/10.1016/j.nucengdes.2019.05.008 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.nucengdes.2019.05.008 es_ES
dc.description.upvformatpinicio 195 es_ES
dc.description.upvformatpfin 204 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 350 es_ES
dc.relation.pasarela S\408144 es_ES
dc.contributor.funder Kernkraftwerk Leibstadt AG es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


This item appears in the following Collection(s)

Show simple item record