Mostrar el registro sencillo del ítem
dc.contributor.author | Martinez-Millana, Antonio | es_ES |
dc.contributor.author | Lizondo, Aroa | es_ES |
dc.contributor.author | Gatta, Roberto | es_ES |
dc.contributor.author | Vera, Salvador | es_ES |
dc.contributor.author | Traver Salcedo, Vicente | es_ES |
dc.contributor.author | Fernández Llatas, Carlos | es_ES |
dc.date.accessioned | 2020-12-23T04:31:26Z | |
dc.date.available | 2020-12-23T04:31:26Z | |
dc.date.issued | 2019-01-02 | es_ES |
dc.identifier.issn | 1660-4601 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157757 | |
dc.description.abstract | [EN] The widespread adoption of real-time location systems is boosting the development of software applications to track persons and assets in hospitals. Among the vast amount of applications, real-time location systems in operating rooms have the advantage of grounding advanced data analysis techniques to improve surgical processes, such as process mining. However, such applications still find entrance barriers in the clinical context. In this paper, we aim to evaluate the preferred features of a process mining-based dashboard deployed in the operating rooms of a hospital equipped with a real-time location system. The dashboard allows to discover and enhance flows of patients based on the location data of patients undergoing an intervention. Analytic hierarchy process was applied to quantify the prioritization of the dashboard features (filtering data, enhancement, node selection, statistics, etc.), distinguishing the priorities that each of the different roles in the operating room service assigned to each feature. The staff in the operating rooms (n = 10) was classified into three groups: Technical, clinical, and managerial staff according to their responsibilities. Results showed different weights for the features in the process mining dashboard for each group, suggesting that a flexible process mining dashboard is needed to boost its potential in the management of clinical interventions in operating rooms. This paper is an extension of a communication presented in the Process-Oriented Data Science for Health Workshop in the Business Process Management Conference 2018. | es_ES |
dc.description.sponsorship | This project received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 812386. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | International Journal of Environmental research and Public Health | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Process mining | es_ES |
dc.subject | Analytic hierarchy process | es_ES |
dc.subject | Operating rooms | es_ES |
dc.subject | Usability | es_ES |
dc.subject | Software | es_ES |
dc.subject | Co-design | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Process Mining Dashboard in Operating Rooms: Analysis of Staff Expectations with Analytic Hierarchy Process | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ijerph16020199 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/812386/EU/Development of an intelligent and multi-hospital end-to-end surgical process management system/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Martinez-Millana, A.; Lizondo, A.; Gatta, R.; Vera, S.; Traver Salcedo, V.; Fernández Llatas, C. (2019). Process Mining Dashboard in Operating Rooms: Analysis of Staff Expectations with Analytic Hierarchy Process. International Journal of Environmental research and Public Health. 16(2):1-14. https://doi.org/10.3390/ijerph16020199 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ijerph16020199 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.pmid | 30642000 | es_ES |
dc.identifier.pmcid | PMC6352092 | es_ES |
dc.relation.pasarela | S\375734 | es_ES |
dc.contributor.funder | MYSPHERA, SL | es_ES |
dc.description.references | Agnoletti, V., Buccioli, M., Padovani, E., Corso, R. M., Perger, P., Piraccini, E., … Gambale, G. (2013). Operating room data management: improving efficiency and safety in a surgical block. BMC Surgery, 13(1). doi:10.1186/1471-2482-13-7 | es_ES |
dc.description.references | Marques, I., Captivo, M. E., & Vaz Pato, M. (2011). An integer programming approach to elective surgery scheduling. OR Spectrum, 34(2), 407-427. doi:10.1007/s00291-011-0279-7 | es_ES |
dc.description.references | Haynes, A. B., Weiser, T. G., Berry, W. R., Lipsitz, S. R., Breizat, A.-H. S., Dellinger, E. P., … Gawande, A. A. (2009). A Surgical Safety Checklist to Reduce Morbidity and Mortality in a Global Population. New England Journal of Medicine, 360(5), 491-499. doi:10.1056/nejmsa0810119 | es_ES |
dc.description.references | Dexter, F., Epstein, R. H., Traub, R. D., Xiao, Y., & Warltier, D. C. (2004). Making Management Decisions on the Day of Surgery Based on Operating Room Efficiency and Patient Waiting Times. Anesthesiology, 101(6), 1444-1453. doi:10.1097/00000542-200412000-00027 | es_ES |
dc.description.references | Fernández-Llatas, C., Meneu, T., Traver, V., & Benedi, J.-M. (2013). Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation. International Journal of Environmental Research and Public Health, 10(11), 5671-5682. doi:10.3390/ijerph10115671 | es_ES |
dc.description.references | Westbrook, J. I., & Braithwaite, J. (2010). Will information and communication technology disrupt the health system and deliver on its promise? Medical Journal of Australia, 193(7), 399-400. doi:10.5694/j.1326-5377.2010.tb03968.x | es_ES |
dc.description.references | Fisher, J. A., & Monahan, T. (2012). Evaluation of real-time location systems in their hospital contexts. International Journal of Medical Informatics, 81(10), 705-712. doi:10.1016/j.ijmedinf.2012.07.001 | es_ES |
dc.description.references | Bath, P. A., Pendleton, N., Bracale, M., & Pecchia, L. (2011). Analytic Hierarchy Process (AHP) for Examining Healthcare Professionals’ Assessments of Risk Factors. Methods of Information in Medicine, 50(05), 435-444. doi:10.3414/me10-01-0028 | es_ES |
dc.description.references | Lee, V. S., Kawamoto, K., Hess, R., Park, C., Young, J., Hunter, C., … Pendleton, R. C. (2016). Implementation of a Value-Driven Outcomes Program to Identify High Variability in Clinical Costs and Outcomes and Association With Reduced Cost and Improved Quality. JAMA, 316(10), 1061. doi:10.1001/jama.2016.12226 | es_ES |
dc.description.references | Sloane, E. B., Liberatore, M. J., Nydick, R. L., Luo, W., & Chung, Q. B. (2003). Using the analytic hierarchy process as a clinical engineering tool to facilitate an iterative, multidisciplinary, microeconomic health technology assessment. Computers & Operations Research, 30(10), 1447-1465. doi:10.1016/s0305-0548(02)00187-9 | es_ES |
dc.description.references | Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234-281. doi:10.1016/0022-2496(77)90033-5 | es_ES |
dc.description.references | Bridges, J. F. P., Hauber, A. B., Marshall, D., Lloyd, A., Prosser, L. A., Regier, D. A., … Mauskopf, J. (2011). Conjoint Analysis Applications in Health—a Checklist: A Report of the ISPOR Good Research Practices for Conjoint Analysis Task Force. Value in Health, 14(4), 403-413. doi:10.1016/j.jval.2010.11.013 | es_ES |
dc.description.references | Proceedings of the 2011 annual conference on Human factors in computing systems - CHI ’11. (2011). doi:10.1145/1978942 | es_ES |
dc.description.references | Anual Report 2014http://chguv.san.gva.es/documents/10184/81032/Informe_anual2014.pdf/713c6559-0e29-4838-967c-93380c24eff9 | es_ES |
dc.description.references | Ratwani, R. M., Fairbanks, R. J., Hettinger, A. Z., & Benda, N. C. (2015). Electronic health record usability: analysis of the user-centered design processes of eleven electronic health record vendors. Journal of the American Medical Informatics Association, 22(6), 1179-1182. doi:10.1093/jamia/ocv050 | es_ES |
dc.description.references | Van der Aalst, W. M. P., Reijers, H. A., Weijters, A. J. M. M., van Dongen, B. F., Alves de Medeiros, A. K., Song, M., & Verbeek, H. M. W. (2007). Business process mining: An industrial application. Information Systems, 32(5), 713-732. doi:10.1016/j.is.2006.05.003 | es_ES |