- -

Process Mining Dashboard in Operating Rooms: Analysis of Staff Expectations with Analytic Hierarchy Process

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Process Mining Dashboard in Operating Rooms: Analysis of Staff Expectations with Analytic Hierarchy Process

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martinez-Millana, Antonio es_ES
dc.contributor.author Lizondo, Aroa es_ES
dc.contributor.author Gatta, Roberto es_ES
dc.contributor.author Vera, Salvador es_ES
dc.contributor.author Traver Salcedo, Vicente es_ES
dc.contributor.author Fernández Llatas, Carlos es_ES
dc.date.accessioned 2020-12-23T04:31:26Z
dc.date.available 2020-12-23T04:31:26Z
dc.date.issued 2019-01-02 es_ES
dc.identifier.issn 1660-4601 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157757
dc.description.abstract [EN] The widespread adoption of real-time location systems is boosting the development of software applications to track persons and assets in hospitals. Among the vast amount of applications, real-time location systems in operating rooms have the advantage of grounding advanced data analysis techniques to improve surgical processes, such as process mining. However, such applications still find entrance barriers in the clinical context. In this paper, we aim to evaluate the preferred features of a process mining-based dashboard deployed in the operating rooms of a hospital equipped with a real-time location system. The dashboard allows to discover and enhance flows of patients based on the location data of patients undergoing an intervention. Analytic hierarchy process was applied to quantify the prioritization of the dashboard features (filtering data, enhancement, node selection, statistics, etc.), distinguishing the priorities that each of the different roles in the operating room service assigned to each feature. The staff in the operating rooms (n = 10) was classified into three groups: Technical, clinical, and managerial staff according to their responsibilities. Results showed different weights for the features in the process mining dashboard for each group, suggesting that a flexible process mining dashboard is needed to boost its potential in the management of clinical interventions in operating rooms. This paper is an extension of a communication presented in the Process-Oriented Data Science for Health Workshop in the Business Process Management Conference 2018. es_ES
dc.description.sponsorship This project received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 812386. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Environmental research and Public Health es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Process mining es_ES
dc.subject Analytic hierarchy process es_ES
dc.subject Operating rooms es_ES
dc.subject Usability es_ES
dc.subject Software es_ES
dc.subject Co-design es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Process Mining Dashboard in Operating Rooms: Analysis of Staff Expectations with Analytic Hierarchy Process es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijerph16020199 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/812386/EU/Development of an intelligent and multi-hospital end-to-end surgical process management system/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Martinez-Millana, A.; Lizondo, A.; Gatta, R.; Vera, S.; Traver Salcedo, V.; Fernández Llatas, C. (2019). Process Mining Dashboard in Operating Rooms: Analysis of Staff Expectations with Analytic Hierarchy Process. International Journal of Environmental research and Public Health. 16(2):1-14. https://doi.org/10.3390/ijerph16020199 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijerph16020199 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 30642000 es_ES
dc.identifier.pmcid PMC6352092 es_ES
dc.relation.pasarela S\375734 es_ES
dc.contributor.funder MYSPHERA, SL es_ES
dc.description.references Agnoletti, V., Buccioli, M., Padovani, E., Corso, R. M., Perger, P., Piraccini, E., … Gambale, G. (2013). Operating room data management: improving efficiency and safety in a surgical block. BMC Surgery, 13(1). doi:10.1186/1471-2482-13-7 es_ES
dc.description.references Marques, I., Captivo, M. E., & Vaz Pato, M. (2011). An integer programming approach to elective surgery scheduling. OR Spectrum, 34(2), 407-427. doi:10.1007/s00291-011-0279-7 es_ES
dc.description.references Haynes, A. B., Weiser, T. G., Berry, W. R., Lipsitz, S. R., Breizat, A.-H. S., Dellinger, E. P., … Gawande, A. A. (2009). A Surgical Safety Checklist to Reduce Morbidity and Mortality in a Global Population. New England Journal of Medicine, 360(5), 491-499. doi:10.1056/nejmsa0810119 es_ES
dc.description.references Dexter, F., Epstein, R. H., Traub, R. D., Xiao, Y., & Warltier, D. C. (2004). Making Management Decisions on the Day of Surgery Based on Operating Room Efficiency and Patient Waiting Times. Anesthesiology, 101(6), 1444-1453. doi:10.1097/00000542-200412000-00027 es_ES
dc.description.references Fernández-Llatas, C., Meneu, T., Traver, V., & Benedi, J.-M. (2013). Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation. International Journal of Environmental Research and Public Health, 10(11), 5671-5682. doi:10.3390/ijerph10115671 es_ES
dc.description.references Westbrook, J. I., & Braithwaite, J. (2010). Will information and communication technology disrupt the health system and deliver on its promise? Medical Journal of Australia, 193(7), 399-400. doi:10.5694/j.1326-5377.2010.tb03968.x es_ES
dc.description.references Fisher, J. A., & Monahan, T. (2012). Evaluation of real-time location systems in their hospital contexts. International Journal of Medical Informatics, 81(10), 705-712. doi:10.1016/j.ijmedinf.2012.07.001 es_ES
dc.description.references Bath, P. A., Pendleton, N., Bracale, M., & Pecchia, L. (2011). Analytic Hierarchy Process (AHP) for Examining Healthcare Professionals’ Assessments of Risk Factors. Methods of Information in Medicine, 50(05), 435-444. doi:10.3414/me10-01-0028 es_ES
dc.description.references Lee, V. S., Kawamoto, K., Hess, R., Park, C., Young, J., Hunter, C., … Pendleton, R. C. (2016). Implementation of a Value-Driven Outcomes Program to Identify High Variability in Clinical Costs and Outcomes and Association With Reduced Cost and Improved Quality. JAMA, 316(10), 1061. doi:10.1001/jama.2016.12226 es_ES
dc.description.references Sloane, E. B., Liberatore, M. J., Nydick, R. L., Luo, W., & Chung, Q. B. (2003). Using the analytic hierarchy process as a clinical engineering tool to facilitate an iterative, multidisciplinary, microeconomic health technology assessment. Computers & Operations Research, 30(10), 1447-1465. doi:10.1016/s0305-0548(02)00187-9 es_ES
dc.description.references Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234-281. doi:10.1016/0022-2496(77)90033-5 es_ES
dc.description.references Bridges, J. F. P., Hauber, A. B., Marshall, D., Lloyd, A., Prosser, L. A., Regier, D. A., … Mauskopf, J. (2011). Conjoint Analysis Applications in Health—a Checklist: A Report of the ISPOR Good Research Practices for Conjoint Analysis Task Force. Value in Health, 14(4), 403-413. doi:10.1016/j.jval.2010.11.013 es_ES
dc.description.references Proceedings of the 2011 annual conference on Human factors in computing systems - CHI ’11. (2011). doi:10.1145/1978942 es_ES
dc.description.references Anual Report 2014http://chguv.san.gva.es/documents/10184/81032/Informe_anual2014.pdf/713c6559-0e29-4838-967c-93380c24eff9 es_ES
dc.description.references Ratwani, R. M., Fairbanks, R. J., Hettinger, A. Z., & Benda, N. C. (2015). Electronic health record usability: analysis of the user-centered design processes of eleven electronic health record vendors. Journal of the American Medical Informatics Association, 22(6), 1179-1182. doi:10.1093/jamia/ocv050 es_ES
dc.description.references Van der Aalst, W. M. P., Reijers, H. A., Weijters, A. J. M. M., van Dongen, B. F., Alves de Medeiros, A. K., Song, M., & Verbeek, H. M. W. (2007). Business process mining: An industrial application. Information Systems, 32(5), 713-732. doi:10.1016/j.is.2006.05.003 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem