Mostrar el registro sencillo del ítem
dc.contributor.author | Ibáñez Sánchez, Gema | es_ES |
dc.contributor.author | Fernández Llatas, Carlos | es_ES |
dc.contributor.author | Martinez-Millana, Antonio | es_ES |
dc.contributor.author | Celda, Angeles | es_ES |
dc.contributor.author | Mandingorra, Jesus | es_ES |
dc.contributor.author | Aparici-Tortajada, Lucía | es_ES |
dc.contributor.author | Valero Ramon, Zoe | es_ES |
dc.contributor.author | Munoz-Gama, Jorge | es_ES |
dc.contributor.author | Sepúlveda, Marcos | es_ES |
dc.contributor.author | Rojas, Eric | es_ES |
dc.contributor.author | Gálvez, Víctor | es_ES |
dc.contributor.author | Capurro, Daniel | es_ES |
dc.contributor.author | Traver Salcedo, Vicente | es_ES |
dc.date.accessioned | 2020-12-23T04:31:36Z | |
dc.date.available | 2020-12-23T04:31:36Z | |
dc.date.issued | 2019-05-02 | es_ES |
dc.identifier.issn | 1660-4601 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157761 | |
dc.description.abstract | [EN] The application of Value-based Healthcare requires not only the identification of key processes in the clinical domain but also an adequate analysis of the value chain delivered to the patient. Data Science and Big Data approaches are technologies that enable the creation of accurate systems that model reality. However, classical Data Mining techniques are presented by professionals as black boxes. This evokes a lack of trust in those techniques in the medical domain. Process Mining technologies are human-understandable Data Science tools that can fill this gap to support the application of Value-Based Healthcare in real domains. The aim of this paper is to perform an analysis of the ways in which Process Mining techniques can support health professionals in the application of Value-Based Technologies. For this purpose, we explored these techniques by analyzing emergency processes and applying the critical timing of Stroke treatment and a Question-Driven methodology. To demonstrate the possibilities of Process Mining in the characterization of the emergency process, we used a real log with 9046 emergency episodes from 2145 stroke patients that occurred from January 2010 to June 2017. Our results demonstrate how Process Mining technology can highlight the differences between the flow of stroke patients compared with that of other patients in an emergency. Further, we show that support for health professionals can be provided by improving their understanding of these techniques and enhancing the quality of care. | es_ES |
dc.description.sponsorship | This research was funded by Hospital General de Valencia thanks to the LOPEZ TRIGO 2017 AWARD and by the CONICYT grant REDI 170136 Project. The APC was funded by the APE/2019/007 (D.O.G.V. 8355/06.08.2018 Annex XIII). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | International Journal of Environmental research and Public Health | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Process mining | es_ES |
dc.subject | Stroke | es_ES |
dc.subject | Emergency | es_ES |
dc.subject | Value-based healthcare | es_ES |
dc.subject | Interactive | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Toward Value-Based Healthcare through Interactive Process Mining in Emergency Rooms: The Stroke Case | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ijerph16101783 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONICYT//REDI 170136/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APE%2F2019%2F007/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Ibáñez Sánchez, G.; Fernández Llatas, C.; Martinez-Millana, A.; Celda, A.; Mandingorra, J.; Aparici-Tortajada, L.; Valero Ramon, Z.... (2019). Toward Value-Based Healthcare through Interactive Process Mining in Emergency Rooms: The Stroke Case. International Journal of Environmental research and Public Health. 16(10):1-22. https://doi.org/10.3390/ijerph16101783 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ijerph16101783 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.pmid | 31137557 | es_ES |
dc.identifier.pmcid | PMC6572362 | es_ES |
dc.relation.pasarela | S\388670 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Consorci Hospital General Universitari de València | es_ES |
dc.contributor.funder | Comisión Nacional de Investigación Científica y Tecnológica, Chile | es_ES |
dc.description.references | Berwick, D. M., Nolan, T. W., & Whittington, J. (2008). The Triple Aim: Care, Health, And Cost. Health Affairs, 27(3), 759-769. doi:10.1377/hlthaff.27.3.759 | es_ES |
dc.description.references | Porter, M. E. (2010). What Is Value in Health Care? New England Journal of Medicine, 363(26), 2477-2481. doi:10.1056/nejmp1011024 | es_ES |
dc.description.references | Mamlin, B. W., & Tierney, W. M. (2016). The Promise of Information and Communication Technology in Healthcare: Extracting Value From the Chaos. The American Journal of the Medical Sciences, 351(1), 59-68. doi:10.1016/j.amjms.2015.10.015 | es_ES |
dc.description.references | Murdoch, T. B., & Detsky, A. S. (2013). The Inevitable Application of Big Data to Health Care. JAMA, 309(13), 1351. doi:10.1001/jama.2013.393 | es_ES |
dc.description.references | Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A., & Escobar, G. (2014). Big Data In Health Care: Using Analytics To Identify And Manage High-Risk And High-Cost Patients. Health Affairs, 33(7), 1123-1131. doi:10.1377/hlthaff.2014.0041 | es_ES |
dc.description.references | Fernández-Llatas, C., Meneu, T., Traver, V., & Benedi, J.-M. (2013). Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation. International Journal of Environmental Research and Public Health, 10(11), 5671-5682. doi:10.3390/ijerph10115671 | es_ES |
dc.description.references | Rojas, E., Sepúlveda, M., Munoz-Gama, J., Capurro, D., Traver, V., & Fernandez-Llatas, C. (2017). Question-Driven Methodology for Analyzing Emergency Room Processes Using Process Mining. Applied Sciences, 7(3), 302. doi:10.3390/app7030302 | es_ES |
dc.description.references | Sackett, D. L., Rosenberg, W. M. C., Gray, J. A. M., Haynes, R. B., & Richardson, W. S. (1996). Evidence based medicine: what it is and what it isn’t. BMJ, 312(7023), 71-72. doi:10.1136/bmj.312.7023.71 | es_ES |
dc.description.references | Is Evidence-Based Medicine Patient-Centered and Is Patient-Centered Care Evidence-Based? (2006). Health Services Research, 41(1), 1-8. doi:10.1111/j.1475-6773.2006.00504.x | es_ES |
dc.description.references | Goldberger, J. J., & Buxton, A. E. (2013). Personalized Medicine vs Guideline-Based Medicine. JAMA, 309(24), 2559. doi:10.1001/jama.2013.6629 | es_ES |
dc.description.references | Kelly, M. P., Heath, I., Howick, J., & Greenhalgh, T. (2015). The importance of values in evidence-based medicine. BMC Medical Ethics, 16(1). doi:10.1186/s12910-015-0063-3 | es_ES |
dc.description.references | Gonzalez-Ferrer, A., Seara, G., Cháfer, J., & Mayol, J. (2018). Generating Big Data Sets from Knowledge-based Decision Support Systems to Pursue Value-based Healthcare. International Journal of Interactive Multimedia and Artificial Intelligence, 4(7), 42. doi:10.9781/ijimai.2017.03.006 | es_ES |
dc.description.references | Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The Parable of Google Flu: Traps in Big Data Analysis. Science, 343(6176), 1203-1205. doi:10.1126/science.1248506 | es_ES |
dc.description.references | Rojas, E., Munoz-Gama, J., Sepúlveda, M., & Capurro, D. (2016). Process mining in healthcare: A literature review. Journal of Biomedical Informatics, 61, 224-236. doi:10.1016/j.jbi.2016.04.007 | es_ES |
dc.description.references | Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769 | es_ES |
dc.description.references | Baker, K., Dunwoodie, E., Jones, R. G., Newsham, A., Johnson, O., Price, C. P., … Hall, G. (2017). Process mining routinely collected electronic health records to define real-life clinical pathways during chemotherapy. International Journal of Medical Informatics, 103, 32-41. doi:10.1016/j.ijmedinf.2017.03.011 | es_ES |
dc.description.references | Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003 | es_ES |
dc.description.references | Partington, A., Wynn, M., Suriadi, S., Ouyang, C., & Karnon, J. (2015). Process Mining for Clinical Processes. ACM Transactions on Management Information Systems, 5(4), 1-18. doi:10.1145/2629446 | es_ES |
dc.description.references | Storm-Versloot, M. N., Ubbink, D. T., Kappelhof, J., & Luitse, J. S. K. (2011). Comparison of an Informally Structured Triage System, the Emergency Severity Index, and the Manchester Triage System to Distinguish Patient Priority in the Emergency Department. Academic Emergency Medicine, 18(8), 822-829. doi:10.1111/j.1553-2712.2011.01122.x | es_ES |
dc.description.references | Feigin, V. L., Roth, G. A., Naghavi, M., Parmar, P., Krishnamurthi, R., Chugh, S., … Forouzanfar, M. H. (2016). Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet Neurology, 15(9), 913-924. doi:10.1016/s1474-4422(16)30073-4 | es_ES |
dc.description.references | Howard, G., & Goff, D. C. (2012). Population shifts and the future of stroke: forecasts of the future burden of stroke. Annals of the New York Academy of Sciences, 1268(1), 14-20. doi:10.1111/j.1749-6632.2012.06665.x | es_ES |
dc.description.references | Gustavsson, A., Svensson, M., Jacobi, F., Allgulander, C., Alonso, J., Beghi, E., … Olesen, J. (2011). Cost of disorders of the brain in Europe 2010. European Neuropsychopharmacology, 21(10), 718-779. doi:10.1016/j.euroneuro.2011.08.008 | es_ES |
dc.description.references | Alberts, M. J. (2000). Recommendations for the Establishment of Primary Stroke Centers. JAMA, 283(23), 3102. doi:10.1001/jama.283.23.3102 | es_ES |
dc.description.references | Conca, T., Saint-Pierre, C., Herskovic, V., Sepúlveda, M., Capurro, D., Prieto, F., & Fernandez-Llatas, C. (2018). Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining. Journal of Medical Internet Research, 20(4), e127. doi:10.2196/jmir.8884 | es_ES |
dc.description.references | Chavalarias, D., Wallach, J. D., Li, A. H. T., & Ioannidis, J. P. A. (2016). Evolution of ReportingPValues in the Biomedical Literature, 1990-2015. JAMA, 315(11), 1141. doi:10.1001/jama.2016.1952 | es_ES |