- -

jHawanet: an open-source project for the implementation and assessment of multi-objective evolutionary algorithms on water distribution networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

jHawanet: an open-source project for the implementation and assessment of multi-objective evolutionary algorithms on water distribution networks

Mostrar el registro completo del ítem

Gutierrez-Bahamondes, JH.; Salgueiro, Y.; Silva-Rubio, SA.; Alsina, MA.; Mora-Melia, D.; Fuertes-Miquel, VS. (2019). jHawanet: an open-source project for the implementation and assessment of multi-objective evolutionary algorithms on water distribution networks. Water. 11(10):1-17. https://doi.org/10.3390/w11102018

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/157762

Ficheros en el ítem

Metadatos del ítem

Título: jHawanet: an open-source project for the implementation and assessment of multi-objective evolutionary algorithms on water distribution networks
Autor: Gutierrez-Bahamondes, Jimmy H. Salgueiro, Yamisleydi Silva-Rubio, Sergio A. Alsina, Marco A. Mora-Melia, Daniel Fuertes-Miquel, Vicente S.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] Efficient design and management of water distribution networks is critical for conservation of water resources and minimization of both energy requirements and maintenance costs. Several computational routines have ...[+]
Palabras clave: Optimization , Multi-objective evolutionary algorithms , Water distribution networks , Hydraulic network modeling , EPANET , JMetal , NSGA-II
Derechos de uso: Reconocimiento (by)
Fuente:
Water. (issn: 2073-4441 )
DOI: 10.3390/w11102018
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/w11102018
Código del Proyecto:
info:eu-repo/grantAgreement/CONICYT//1180660/
Agradecimientos:
This research and the APC were funded by the Comision Nacional de Investigacion Cientifica y Tecnologica (Conicyt), grant number 1180660
Tipo: Artículo

References

Wang, Y., Hua, Z., & Wang, L. (2018). Parameter Estimation of Water Quality Models Using an Improved Multi-Objective Particle Swarm Optimization. Water, 10(1), 32. doi:10.3390/w10010032

Letting, L., Hamam, Y., & Abu-Mahfouz, A. (2017). Estimation of Water Demand in Water Distribution Systems Using Particle Swarm Optimization. Water, 9(8), 593. doi:10.3390/w9080593

Ngamalieu-Nengoue, U. A., Martínez-Solano, F. J., Iglesias-Rey, P. L., & Mora-Meliá, D. (2019). Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation. Water, 11(5), 935. doi:10.3390/w11050935 [+]
Wang, Y., Hua, Z., & Wang, L. (2018). Parameter Estimation of Water Quality Models Using an Improved Multi-Objective Particle Swarm Optimization. Water, 10(1), 32. doi:10.3390/w10010032

Letting, L., Hamam, Y., & Abu-Mahfouz, A. (2017). Estimation of Water Demand in Water Distribution Systems Using Particle Swarm Optimization. Water, 9(8), 593. doi:10.3390/w9080593

Ngamalieu-Nengoue, U. A., Martínez-Solano, F. J., Iglesias-Rey, P. L., & Mora-Meliá, D. (2019). Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation. Water, 11(5), 935. doi:10.3390/w11050935

Morley, M. ., Atkinson, R. ., Savić, D. ., & Walters, G. . (2001). GAnet: genetic algorithm platform for pipe network optimisation. Advances in Engineering Software, 32(6), 467-475. doi:10.1016/s0965-9978(00)00107-1

Van Thienen, P., & Vertommen, I. (2015). Gondwana: A Generic Optimization Tool for Drinking Water Distribution Systems Design and Operation. Procedia Engineering, 119, 1212-1220. doi:10.1016/j.proeng.2015.08.978

Mala-Jetmarova, H., Sultanova, N., & Savic, D. (2017). Lost in optimisation of water distribution systems? A literature review of system operation. Environmental Modelling & Software, 93, 209-254. doi:10.1016/j.envsoft.2017.02.009

Durillo, J. J., & Nebro, A. J. (2011). jMetal: A Java framework for multi-objective optimization. Advances in Engineering Software, 42(10), 760-771. doi:10.1016/j.advengsoft.2011.05.014

Ravber, M., Mernik, M., & Črepinšek, M. (2017). The impact of Quality Indicators on the rating of Multi-objective Evolutionary Algorithms. Applied Soft Computing, 55, 265-275. doi:10.1016/j.asoc.2017.01.038

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem