Mostrar el registro sencillo del ítem
dc.contributor.author | Guijarro, Francisco | es_ES |
dc.date.accessioned | 2020-12-23T04:31:55Z | |
dc.date.available | 2020-12-23T04:31:55Z | |
dc.date.issued | 2019-08-14 | es_ES |
dc.identifier.issn | 1660-4601 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157770 | |
dc.description.abstract | [EN] Countries are encouraged to integrate environmental performance metrics by covering the key value-drivers of sustainable development, such as environmental health and ecosystem vitality. The proper measurement of environmental trends provides a foundation for policymaking, which should be addressed by considering the multicriteria nature of the problem. This paper proposes a goal programming model for ranking countries according to the multidimensional nature of their environmental performance metrics by considering 10 issue categories and 24 performance indicators. The results will provide guidance to those countries that aspire to become leaders in environmental performance. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | International Journal of Environmental research and Public Health | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Multicriteria environmental performance | es_ES |
dc.subject | Goal programming | es_ES |
dc.subject | Ranking | es_ES |
dc.subject | Weighting | es_ES |
dc.subject.classification | ECONOMIA FINANCIERA Y CONTABILIDAD | es_ES |
dc.title | A Multicriteria Model for the Assessment of Countries' Environmental Performance | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ijerph16162868 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials | es_ES |
dc.description.bibliographicCitation | Guijarro, F. (2019). A Multicriteria Model for the Assessment of Countries' Environmental Performance. International Journal of Environmental research and Public Health. 16(16):1-15. https://doi.org/10.3390/ijerph16162868 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ijerph16162868 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 16 | es_ES |
dc.identifier.pmid | 31405177 | es_ES |
dc.identifier.pmcid | PMC6720289 | es_ES |
dc.relation.pasarela | S\392222 | es_ES |
dc.description.references | Short, F. T., Kosten, S., Morgan, P. A., Malone, S., & Moore, G. E. (2016). Impacts of climate change on submerged and emergent wetland plants. Aquatic Botany, 135, 3-17. doi:10.1016/j.aquabot.2016.06.006 | es_ES |
dc.description.references | Lynch, A. J., Myers, B. J. E., Chu, C., Eby, L. A., Falke, J. A., Kovach, R. P., … Whitney, J. E. (2016). Climate Change Effects on North American Inland Fish Populations and Assemblages. Fisheries, 41(7), 346-361. doi:10.1080/03632415.2016.1186016 | es_ES |
dc.description.references | Wang, Z.-X., Hao, P., & Yao, P.-Y. (2017). Non-Linear Relationship between Economic Growth and CO2 Emissions in China: An Empirical Study Based on Panel Smooth Transition Regression Models. International Journal of Environmental Research and Public Health, 14(12), 1568. doi:10.3390/ijerph14121568 | es_ES |
dc.description.references | Greco, S., Ishizaka, A., Tasiou, M., & Torrisi, G. (2018). On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness. Social Indicators Research, 141(1), 61-94. doi:10.1007/s11205-017-1832-9 | es_ES |
dc.description.references | Biggeri, M., Clark, D. A., Ferrannini, A., & Mauro, V. (2019). Tracking the SDGs in an ‘integrated’ manner: A proposal for a new index to capture synergies and trade-offs between and within goals. World Development, 122, 628-647. doi:10.1016/j.worlddev.2019.05.022 | es_ES |
dc.description.references | Munda, G., & Nardo, M. (2009). Noncompensatory/nonlinear composite indicators for ranking countries: a defensible setting. Applied Economics, 41(12), 1513-1523. doi:10.1080/00036840601019364 | es_ES |
dc.description.references | Munda, G. (2011). Choosing Aggregation Rules for Composite Indicators. Social Indicators Research, 109(3), 337-354. doi:10.1007/s11205-011-9911-9 | es_ES |
dc.description.references | Ding, Y., Fu, Y., Lai, K. K., & John Leung, W. K. (2017). Using Ranked Weights and Acceptability Analysis to Construct Composite Indicators: A Case Study of Regional Sustainable Society Index. Social Indicators Research, 139(3), 871-885. doi:10.1007/s11205-017-1765-3 | es_ES |
dc.description.references | Zhou, P., Ang, B. W., & Poh, K. L. (2007). A mathematical programming approach to constructing composite indicators. Ecological Economics, 62(2), 291-297. doi:10.1016/j.ecolecon.2006.12.020 | es_ES |
dc.description.references | Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. doi:10.1016/0377-2217(78)90138-8 | es_ES |
dc.description.references | Zhou, L., Tokos, H., Krajnc, D., & Yang, Y. (2012). Sustainability performance evaluation in industry by composite sustainability index. Clean Technologies and Environmental Policy, 14(5), 789-803. doi:10.1007/s10098-012-0454-9 | es_ES |
dc.description.references | García, F., Guijarro, F., & Moya, I. (2010). A goal programming approach to estimating performance weights for ranking firms. Computers & Operations Research, 37(9), 1597-1609. doi:10.1016/j.cor.2009.11.018 | es_ES |
dc.description.references | García, F., Guijarro, F., & Moya, I. (2010). Ranking Spanish savings banks: A multicriteria approach. Mathematical and Computer Modelling, 52(7-8), 1058-1065. doi:10.1016/j.mcm.2010.02.015 | es_ES |
dc.description.references | Juwana, I., Muttil, N., & Perera, B. J. C. (2012). Indicator-based water sustainability assessment — A review. Science of The Total Environment, 438, 357-371. doi:10.1016/j.scitotenv.2012.08.093 | es_ES |
dc.description.references | Wiréhn, L., Danielsson, Å., & Neset, T.-S. S. (2015). Assessment of composite index methods for agricultural vulnerability to climate change. Journal of Environmental Management, 156, 70-80. doi:10.1016/j.jenvman.2015.03.020 | es_ES |
dc.description.references | Charnes, A., Cooper, W. W., & Ferguson, R. O. (1955). Optimal Estimation of Executive Compensation by Linear Programming. Management Science, 1(2), 138-151. doi:10.1287/mnsc.1.2.138 | es_ES |
dc.description.references | Tamiz, M., Jones, D., & Romero, C. (1998). Goal programming for decision making: An overview of the current state-of-the-art. European Journal of Operational Research, 111(3), 569-581. doi:10.1016/s0377-2217(97)00317-2 | es_ES |
dc.description.references | Linares, P. (2002). Aggregation of preferences in an environmental economics context: a goal-programming approach. Omega, 30(2), 89-95. doi:10.1016/s0305-0483(01)00059-7 | es_ES |
dc.description.references | Romero, C. (2001). Extended lexicographic goal programming: a unifying approach. Omega, 29(1), 63-71. doi:10.1016/s0305-0483(00)00026-8 | es_ES |
dc.description.references | Dunlap, R. E., & Mertig, A. G. (1995). Global Concern for the Environment: Is Affluence a Prerequisite? Journal of Social Issues, 51(4), 121-137. doi:10.1111/j.1540-4560.1995.tb01351.x | es_ES |