Mostrar el registro sencillo del ítem
dc.contributor.author | Asensio Cuesta, Sabina | es_ES |
dc.contributor.author | Sánchez-García, Ángel | es_ES |
dc.contributor.author | Conejero, J. Alberto | es_ES |
dc.contributor.author | Sáez Silvestre, Carlos | es_ES |
dc.contributor.author | Rivero-Rodriguez, Alejandro | es_ES |
dc.contributor.author | Garcia-Gomez, Juan M | es_ES |
dc.date.accessioned | 2020-12-23T04:32:00Z | |
dc.date.available | 2020-12-23T04:32:00Z | |
dc.date.issued | 2019-02-01 | es_ES |
dc.identifier.issn | 1660-4601 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157773 | |
dc.description.abstract | [EN] Quality of life (QoL) indicators are now being adopted as clinical outcomes in clinical trials on cancer treatments. Technology-free daily monitoring of patients is complicated, time-consuming and expensive due to the need for vast amounts of resources and personnel. The alternative method of using the patients¿ own phones could reduce the burden of continuous monitoring of cancer patients in clinical trials. This paper proposes monitoring the patients¿ QoL by gathering data from their own phones. We considered that the continuous multiparametric acquisition of movement, location, phone calls, conversations and data use could be employed to simultaneously monitor their physical, psychological, social and environmental aspects. An open access phone app was developed (Human Dynamics Reporting Service (HDRS)) to implement this approach. We here propose a novel mapping between the standardized QoL items for these patients, the European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30) and define HDRS monitoring indicators. A pilot study with university volunteers verified the plausibility of detecting human activity indicators directly related to QoL. | es_ES |
dc.description.sponsorship | Funding for this study was provided by the authors' various departments, and partially by the CrowdHealth Project (Collective Wisdom Driving Public Health Policies (727560)) and the MTS4up project (DPI2016-80054-R). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | International Journal of Environmental research and Public Health | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Oncology | es_ES |
dc.subject | Cancer | es_ES |
dc.subject | Activity recognition | es_ES |
dc.subject | Mobile sensors | es_ES |
dc.subject | Pattern recognition | es_ES |
dc.subject | Visual analytics | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | PROYECTOS DE INGENIERIA | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Smartphone sensors for monitoring cancer-related Quality of Life: App design, EORTC QLQ-C30 mapping and feasibility study in healthy subjects | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ijerph16030461 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/727560/EU/Collective wisdom driving public health policies/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2016-80054-R/ES/BIOMARCADORES DINAMICOS BASADOS EN FIRMAS TISULARES MULTIPARAMETRICAS PARA EL SEGUIMIENTO Y EVALUACION DE LA RESPUESTA A TRATAMIENTO DE PACIENTES CON GLIOBLASTOMA Y CANCER DE/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Asensio Cuesta, S.; Sánchez-García, Á.; Conejero, JA.; Sáez Silvestre, C.; Rivero-Rodriguez, A.; Garcia-Gomez, JM. (2019). Smartphone sensors for monitoring cancer-related Quality of Life: App design, EORTC QLQ-C30 mapping and feasibility study in healthy subjects. International Journal of Environmental research and Public Health. 16(3):1-18. https://doi.org/10.3390/ijerph16030461 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ijerph16030461 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.pmid | 30764535 | es_ES |
dc.identifier.pmcid | PMC6388149 | es_ES |
dc.relation.pasarela | S\378146 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Number of Smartphone Users Worldwide from 2014 to 2020 (in Billions)https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ | es_ES |
dc.description.references | Mirkovic, J., Kaufman, D. R., & Ruland, C. M. (2014). Supporting Cancer Patients in Illness Management: Usability Evaluation of a Mobile App. JMIR mHealth and uHealth, 2(3), e33. doi:10.2196/mhealth.3359 | es_ES |
dc.description.references | Xing Su, Hanghang Tong, & Ping Ji. (2014). Activity recognition with smartphone sensors. Tsinghua Science and Technology, 19(3), 235-249. doi:10.1109/tst.2014.6838194 | es_ES |
dc.description.references | Schmitz Weiss, A. (2013). Exploring News Apps and Location-Based Services on the Smartphone. Journalism & Mass Communication Quarterly, 90(3), 435-456. doi:10.1177/1077699013493788 | es_ES |
dc.description.references | Higgins, J. P. (2016). Smartphone Applications for Patients’ Health and Fitness. The American Journal of Medicine, 129(1), 11-19. doi:10.1016/j.amjmed.2015.05.038 | es_ES |
dc.description.references | Rivenson, Y., Ceylan Koydemir, H., Wang, H., Wei, Z., Ren, Z., Günaydın, H., … Ozcan, A. (2018). Deep Learning Enhanced Mobile-Phone Microscopy. ACS Photonics, 5(6), 2354-2364. doi:10.1021/acsphotonics.8b00146 | es_ES |
dc.description.references | Priye, A., Ball, C. S., & Meagher, R. J. (2018). Colorimetric-Luminance Readout for Quantitative Analysis of Fluorescence Signals with a Smartphone CMOS Sensor. Analytical Chemistry, 90(21), 12385-12389. doi:10.1021/acs.analchem.8b03521 | es_ES |
dc.description.references | Measuring Quality of Life for Cancer Patients: Where Are We Today and Where Are We Headed Tomorrow?http://blog.mdsol.com/measuring-quality-of-life-for-cancer-patients-where-are-we-today-and-where-are-we-headed-tomorrow/ | es_ES |
dc.description.references | Zulueta, J., Piscitello, A., Rasic, M., Easter, R., Babu, P., Langenecker, S. A., … Leow, A. (2018). Predicting Mood Disturbance Severity with Mobile Phone Keystroke Metadata: A BiAffect Digital Phenotyping Study. Journal of Medical Internet Research, 20(7), e241. doi:10.2196/jmir.9775 | es_ES |
dc.description.references | Caruso, R., GiuliaNanni, M., Riba, M. B., Sabato, S., & Grassi, L. (2017). Depressive Spectrum Disorders in Cancer: Diagnostic Issues and Intervention. A Critical Review. Current Psychiatry Reports, 19(6). doi:10.1007/s11920-017-0785-7 | es_ES |
dc.description.references | THE WHOQOL GROUP. (1998). Development of the World Health Organization WHOQOL-BREF Quality of Life Assessment. Psychological Medicine, 28(3), 551-558. doi:10.1017/s0033291798006667 | es_ES |
dc.description.references | Basic Issues Concerning Health-Related Quality of Life. (2017). Central European Journal of Urology, 70(2). doi:10.5173/ceju.2017.923 | es_ES |
dc.description.references | Sloan, J. A. (2011). Metrics to Assess Quality of Life After Management of Early-Stage Lung Cancer. The Cancer Journal, 17(1), 63-67. doi:10.1097/ppo.0b013e31820e15dc | es_ES |
dc.description.references | Bordoni, R., Ciardiello, F., von Pawel, J., Cortinovis, D., Karagiannis, T., Ballinger, M., … Rittmeyer, A. (2018). Patient-Reported Outcomes in OAK: A Phase III Study of Atezolizumab Versus Docetaxel in Advanced Non–Small-cell Lung Cancer. Clinical Lung Cancer, 19(5), 441-449.e4. doi:10.1016/j.cllc.2018.05.011 | es_ES |
dc.description.references | Hartkopf, A. D., Graf, J., Simoes, E., Keilmann, L., Sickenberger, N., Gass, P., … Wallwiener, M. (2017). Electronic-Based Patient-Reported Outcomes: Willingness, Needs, and Barriers in Adjuvant and Metastatic Breast Cancer Patients. JMIR Cancer, 3(2), e11. doi:10.2196/cancer.6996 | es_ES |
dc.description.references | Wallwiener, M., Matthies, L., Simoes, E., Keilmann, L., Hartkopf, A. D., Sokolov, A. N., … Brucker, S. Y. (2017). Reliability of an e-PRO Tool of EORTC QLQ-C30 for Measurement of Health-Related Quality of Life in Patients With Breast Cancer: Prospective Randomized Trial. Journal of Medical Internet Research, 19(9), e322. doi:10.2196/jmir.8210 | es_ES |
dc.description.references | Gresham, G., Hendifar, A. E., Spiegel, B., Neeman, E., Tuli, R., Rimel, B. J., … Shinde, A. M. (2018). Wearable activity monitors to assess performance status and predict clinical outcomes in advanced cancer patients. npj Digital Medicine, 1(1). doi:10.1038/s41746-018-0032-6 | es_ES |
dc.description.references | BOHANNON, R. W. (1997). Comfortable and maximum walking speed of adults aged 20—79 years: reference values and determinants. Age and Ageing, 26(1), 15-19. doi:10.1093/ageing/26.1.15 | es_ES |
dc.description.references | Pérez-García, V. M., Fitzpatrick, S., Pérez-Romasanta, L. A., Pesic, M., Schucht, P., Arana, E., & Sánchez-Gómez, P. (2016). Applied mathematics and nonlinear sciences in the war on cancer. Applied Mathematics and Nonlinear Sciences, 1(2), 423-436. doi:10.21042/amns.2016.2.00036 | es_ES |
dc.description.references | Shin, W., Song, S., Jung, S.-Y., Lee, E., Kim, Z., Moon, H.-G., … Lee, J. E. (2017). The association between physical activity and health-related quality of life among breast cancer survivors. Health and Quality of Life Outcomes, 15(1). doi:10.1186/s12955-017-0706-9 | es_ES |
dc.description.references | Wearable Fitness Monitors Useful in Cancer Treatment, Study Findswww.sciencedaily.com/releases/2018/05/180501130856.htm | es_ES |
dc.description.references | Bade, B. C., Brooks, M. C., Nietert, S. B., Ulmer, A., Thomas, D. D., Nietert, P. J., … Silvestri, G. A. (2016). Assessing the Correlation Between Physical Activity and Quality of Life in Advanced Lung Cancer. Integrative Cancer Therapies, 17(1), 73-79. doi:10.1177/1534735416684016 | es_ES |
dc.description.references | Fortner, B. V., Stepanski, E. J., Wang, S. C., Kasprowicz, S., & Durrence, H. H. (2002). Sleep and Quality of Life in Breast Cancer Patients. Journal of Pain and Symptom Management, 24(5), 471-480. doi:10.1016/s0885-3924(02)00500-6 | es_ES |
dc.description.references | Mishra, S. I., Scherer, R. W., Snyder, C., Geigle, P., & Gotay, C. (2014). Are Exercise Programs Effective for Improving Health-Related Quality of Life Among Cancer Survivors? A Systematic Review and Meta-Analysis. Oncology Nursing Forum, 41(6), E326-E342. doi:10.1188/14.onf.e326-e342 | es_ES |
dc.description.references | Ratcliff, C. G., Lam, C. Y., Arun, B., Valero, V., & Cohen, L. (2014). Ecological momentary assessment of sleep, symptoms, and mood during chemotherapy for breast cancer. Psycho-Oncology, 23(11), 1220-1228. doi:10.1002/pon.3525 | es_ES |
dc.description.references | Cox, S. M., Lane, A., & Volchenboum, S. L. (2018). Use of Wearable, Mobile, and Sensor Technology in Cancer Clinical Trials. JCO Clinical Cancer Informatics, (2), 1-11. doi:10.1200/cci.17.00147 | es_ES |
dc.description.references | Brown, W., Yen, P.-Y., Rojas, M., & Schnall, R. (2013). Assessment of the Health IT Usability Evaluation Model (Health-ITUEM) for evaluating mobile health (mHealth) technology. Journal of Biomedical Informatics, 46(6), 1080-1087. doi:10.1016/j.jbi.2013.08.001 | es_ES |
dc.description.references | Darlow, S., & Wen, K.-Y. (2016). Development testing of mobile health interventions for cancer patient self-management: A review. Health Informatics Journal, 22(3), 633-650. doi:10.1177/1460458215577994 | es_ES |
dc.description.references | Martin Sanchez, F., Gray, K., Bellazzi, R., & Lopez-Campos, G. (2014). Exposome informatics: considerations for the design of future biomedical research information systems. Journal of the American Medical Informatics Association, 21(3), 386-390. doi:10.1136/amiajnl-2013-001772 | es_ES |
dc.description.references | Kim, H. H., Lee, S. Y., Baik, S. Y., & Kim, J. H. (2015). MELLO: Medical lifelog ontology for data terms from self-tracking and lifelog devices. International Journal of Medical Informatics, 84(12), 1099-1110. doi:10.1016/j.ijmedinf.2015.08.005 | es_ES |
dc.description.references | Kessel, K. A., Vogel, M. M., Alles, A., Dobiasch, S., Fischer, H., & Combs, S. E. (2018). Mobile App Delivery of the EORTC QLQ-C30 Questionnaire to Assess Health-Related Quality of Life in Oncological Patients: Usability Study. JMIR mHealth and uHealth, 6(2), e45. doi:10.2196/mhealth.9486 | es_ES |
dc.description.references | Elsbernd, A., Hjerming, M., Visler, C., Hjalgrim, L. L., Niemann, C. U., Boisen, K., & Pappot, H. (2018). Cocreated Smartphone App to Improve the Quality of Life of Adolescents and Young Adults with Cancer (Kræftværket): Protocol for a Quantitative and Qualitative Evaluation. JMIR Research Protocols, 7(5), e10098. doi:10.2196/10098 | es_ES |