- -

Efficiency Enhancement of Cu2BaSnS4 Experimental Thin film Solar Cell by Device Modeling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficiency Enhancement of Cu2BaSnS4 Experimental Thin film Solar Cell by Device Modeling

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Khattak, Yousaf Hameed es_ES
dc.contributor.author Baig, Faisal es_ES
dc.contributor.author Toura, Hanae es_ES
dc.contributor.author Beg, Saira es_ES
dc.contributor.author Marí, B. es_ES
dc.date.accessioned 2020-12-31T04:31:13Z
dc.date.available 2020-12-31T04:31:13Z
dc.date.issued 2019-12 es_ES
dc.identifier.issn 0022-2461 es_ES
dc.identifier.uri http://hdl.handle.net/10251/158175
dc.description.abstract [EN] Copper barium tin sulfide (CBTS) is a direct band gap earth abundant, non-toxic and quaternary semiconductor compound. It is used as absorber because of its direct band gap of 1.9 eV. A numerical guide is proposed for CBTS-based photovoltaic cell to enhance the efficiency of experimentally designed device with introducing Cu2O as back surface field (BSF) layer by means of numerical modeling. Device optimization was performed in SCAPS-1D software under 1.5 AM illumination spectrum. After introducing BSF layer and optimized physical parameters, promising result was achieved with PCE of 9.72%, V-oc of 0.81 V, J(sc) of 15.73 mA/cm(2) and FF of 78.23%. The promising outcomes of this work will give a guideline for the feasible production of high-efficiency inorganic CBTS-based photovoltaic cells. es_ES
dc.description.sponsorship This work was supported by Ministerio de Economia y Competitividad (ENE2016-77798-C4-2-R) and Generalitat valenciana (Prometeus 2014/044). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Materials Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Performance es_ES
dc.subject SR es_ES
dc.subject BA es_ES
dc.subject VI es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Efficiency Enhancement of Cu2BaSnS4 Experimental Thin film Solar Cell by Device Modeling es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10853-019-03942-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2016-77798-C4-2-R/ES/APROVECHAMIENTO DE LA LUZ SOLAR CON PROCESOS DE DOS FOTONES-TF/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F044/ES/Técnicas de Fabricación Avanzada y Control de Calidad de nuevos materiales multifuncionales en movilidad sostenible/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Khattak, YH.; Baig, F.; Toura, H.; Beg, S.; Marí, B. (2019). Efficiency Enhancement of Cu2BaSnS4 Experimental Thin film Solar Cell by Device Modeling. Journal of Materials Science. 54(24):14787-14796. https://doi.org/10.1007/s10853-019-03942-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10853-019-03942-6 es_ES
dc.description.upvformatpinicio 14787 es_ES
dc.description.upvformatpfin 14796 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 54 es_ES
dc.description.issue 24 es_ES
dc.relation.pasarela S\395469 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Küçükaçıl Artun G, Polat N, Yay OD, Özden Üzmez Ö, Arı A, Tuna Tuygun G, Elbir T, Altuğ H, Dumanoğlu Y, Döğeroğlu T, Dawood A, Odabasi M, Gaga EO (2017) An integrative approach for determination of air pollution and its health effects in a coal fired power plant area by passive sampling. Atmos Environ 150:331–345. https://doi.org/10.1016/j.atmosenv.2016.11.025 es_ES
dc.description.references Khattak YH, Mahmood T, Alam K, Sarwar T, Ullah I, Ullah H, Ullah UH (2014) Inayat, Smart energy management system for utility source and photovoltaic power system using FPGA and ZigBee. Am J Electr Power Energy Syst 3:86–94. https://doi.org/10.11648/j.epes.20140305.11 es_ES
dc.description.references Ge J, Koirala P, Grice CR, Roland PJ, Yu Y, Tan X, Ellingson RJ, Collins RW, Yan Y (2017) Oxygenated CdS buffer layers enabling high open-circuit voltages in earth-abundant Cu2BaSnS4 thin-film solar cells. Adv Energy Mater 7:160180301–160180310. https://doi.org/10.1002/aenm.201601803 es_ES
dc.description.references Steinmann V, Brandt RE, Buonassisi T (2015) Non-cubic solar cell materials. Nat Photon 9:355–357. https://doi.org/10.1038/nphoton.2015.85 es_ES
dc.description.references Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A, Friedlmeier TM, Powalla M (2015) Properties of Cu(In, Ga)Se 2 solar cells with new record efficiencies up to 21.7%. Phys Status Solidi Rapid Res Lett 9:28–31. https://doi.org/10.1002/pssr.201409520 es_ES
dc.description.references Shin D, Saparov B, Mitzi DB (2017) Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials. Adv Energy Mater. https://doi.org/10.1002/aenm.201602366 es_ES
dc.description.references Paper C, Le A, Universit D, Universit B, Universit MA, Marchionna S, Sistema R, View T, Le Donne A (2017) Earth-abundant thin film solar cells based on Cu2MnSnS4. In: European photovoltaic solar energy conference, pp 25–29 es_ES
dc.description.references Khattak YH, Baig F, Ullah S, Marí B, Beg S, Ullah H (2018) Enhancement of the conversion efficiency of thin film kesterite solar cell. J Renew Sustain Energy 10:033514–03350101. https://doi.org/10.1063/1.5023478 es_ES
dc.description.references Fontané MYVX, Izquierdo-Roca V, Saucedo E, Schorr S, Yukhymchuk VO, Pérez-Rodríguez JRMA (2012) Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe, Zn)SnS 4. J Alloy Compd J 539:190–194. https://doi.org/10.1016/j.jallcom.2012.06.042 es_ES
dc.description.references Zhang X, Bao N, Ramasamy K, Wang YY-HA, Wang YY-HA, Lin B, Gupta A (2012) Crystal phase-controlled synthesis of Cu2FeSnS4 nanocrystals with a band gap of around 1.5 eV. Chem Commun. 48:4956–4958. https://doi.org/10.1039/c2cc31648j es_ES
dc.description.references Mohammadnejad S, Baghban Parashkouh A (2017) CZTSSe solar cell efficiency improvement using a new band-gap grading model in absorber layer. Appl Phys A Mater Sci Process 123:1–9. https://doi.org/10.1007/s00339-017-1371-x es_ES
dc.description.references Adewoyin AD, Olopade MA, Chendo M (2017) Enhancement of the conversion efficiency of Cu2ZnSnS4 thin film solar cell through the optimization of some device parameters. Optik (Stuttg) 133:122–131. https://doi.org/10.1016/j.ijleo.2017.01.008 es_ES
dc.description.references Boutebakh FZ, Zeggar ML, Attaf N, Aida MS (2017) Electrical properties and back contact study of CZTS/ZnS heterojunction. Opt Int J Light Electron Opt 144:180–190. https://doi.org/10.1016/j.ijleo.2017.06.080 es_ES
dc.description.references Ananthakumar S, Ram Kumar J, Moorthy Babu S (2016) Synthesis of Cu2ZnSnSe4 hierarchical nanostructures by colloidal method. Opt Int J Light Electron Opt 127:10360–10365. https://doi.org/10.1016/j.ijleo.2016.08.058 es_ES
dc.description.references Oueslati H, Ben Rabeh M, Kanzari M (2018) Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method. Appl Phys A 1:18–339. https://doi.org/10.1007/s00339-018-1566-9 es_ES
dc.description.references Khattak YH, Baig F, Ullah S, Marí B, Beg S, Ullah H (2018) Numerical modeling baseline for high efficiency (Cu 2 FeSnS 4) CFTS based thin film kesterite solar cell. Optik (Stuttg) 164:547–555. https://doi.org/10.1016/j.ijleo.2018.03.055 es_ES
dc.description.references Khattak YH, Baig F, Ullah S, Soucase BM, Beg S, Ullah H, Marí B, Beg S, Ullah H (2018) Efficiency enhancement of Cu2FeSnS4 based thin film solar cell: a numerical analysis. J. Nanoelectron Optoelectron 13:1096–1101. https://doi.org/10.1166/jno.2018.2337 es_ES
dc.description.references Xiao Z, Meng W, Li JV, Yan Y (2017) Distant-atom mutation for better earth-abundant light absorbers: a case study of Cu2BaSnSe4. ACS Energy Lett 2:29–35. https://doi.org/10.1021/acsenergylett.6b00577 es_ES
dc.description.references Shin D, Saparov B, Zhu T, Huhn WP, Blum V, Mitzi DB (2016) BaCu2Sn(S, Se)4: earth-abundant chalcogenides for thin-film photovoltaics. Chem Mater 28:4771–4780. https://doi.org/10.1021/acs.chemmater.6b01832 es_ES
dc.description.references Repins IL, Romero MJ, Li JV, Wei S-H, Kuciauskas D, Jiang C-S, Beall C, DeHart C, Mann J, Hsu W-C, Teeter G, Goodrich A, Noufi R (2013) Kesterite successes, ongoing work, and challenges: a perspective from vacuum deposition. IEEE J Photovolt 3:439–445. https://doi.org/10.1109/JPHOTOV.2012.2215842 es_ES
dc.description.references Zhou H, Hsu W-CC, Duan H-SS, Bob B, Yang W, Bin Song T-B, Hsu C-JJ, Yang Y (2013) CZTS nanocrystals: a promising approach for next generation thin film photovoltaics. Energy Environ Sci 6:2822–2838. https://doi.org/10.1039/c3ee41627e es_ES
dc.description.references Khattak YH, Baig F, Toura H, Ullah S, Marí B, Beg S, Ullah H (2018) Effect of CZTSe BSF and minority carrier life time on the efficiency enhancement of CZTS kesterite solar cell. Curr Appl Phys 18:633–641. https://doi.org/10.1016/j.cap.2018.03.013 es_ES
dc.description.references Ge J, Roland PJ, Koirala P, Meng W, Young JL, Petersen R, Deutsch TG, Teeter G, Ellingson RJ, Collins RW, Yan Y (2017) Employing overlayers to improve the performance of Cu2BaSnS4 thin film based photoelectrochemical water reduction devices. Chem Mater 29:916–920. https://doi.org/10.1021/acs.chemmater.6b03347 es_ES
dc.description.references Ge J, Yan Y (2017) Synthesis and characterization of photoelectrochemical and photovoltaic Cu2BaSnS4 thin films and solar cells. J Mater Chem C 5:6406–6419. https://doi.org/10.1039/C7TC01678F es_ES
dc.description.references Hong F, Lin W, Meng W, Yan Y (2016) Trigonal Cu2-II-Sn-VI4(II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics. Phys Chem Chem Phys 18:4828–4834. https://doi.org/10.1039/C5CP06977G es_ES
dc.description.references Todorov T, Gunawan O, Guha S (2016) A road towards 25% efficiency and beyond: perovskite tandem solar cells. Mol Syst Des Eng 1:370–376. https://doi.org/10.1039/C6ME00041J es_ES
dc.description.references Baig F, Khattak YH, Mari B, Ullah S, Ullah H, Ahmed S (2018) Efficiency enhancement of SnS solar cell using back surface field. In: 2018 1st international conference power, energy smart grid, IEEE, pp 1–5. https://doi.org/10.1109/icpesg.2018.8384496 es_ES
dc.description.references Baig F, Ullah H, Khattak YH, Mari Soucase B (2016) Numerical analysis of SnS Photovoltaic cells. In: 2016 international renewable sustainable energy conference, IEEE, pp 596–600. https://doi.org/10.1109/irsec.2016.7983899 es_ES
dc.description.references Burgelman M, Nollet P, Degrave S (2000) Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361–362:527–532. https://doi.org/10.1016/S0040-6090(99)00825-1 es_ES
dc.description.references Jabr RA, Hamad M, Mohanna YM (2007) Newton-Raphson solution of Poisson’s equation in a Pn diode. Int J Electr Eng Educ 44:23–33. https://doi.org/10.7227/IJEEE.44.1.3 es_ES
dc.description.references Hu CC (2010) Modern semiconductor devices for integrated circuits es_ES
dc.description.references Khattak YH (2019) Modeling of high power conversion efficiency thin film solar cells. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118802 es_ES
dc.description.references Shin D, Zhu T, Huang X, Gunawan O, Blum V, Mitzi DB (2017) Earth-abundant chalcogenide photovoltaic devices with over 5% efficiency based on a Cu2BaSn(S, Se)4 Absorber. Adv Mater 29:1–7. https://doi.org/10.1002/adma.201606945 es_ES
dc.description.references Saha U, Alam MK (2018) Proposition of an environment friendly triple junction solar cell based on earth abundant CBTSSe/CZTS/ACZTSe materials. Phys Status Solidi Rapid Res Lett 12:1–5. https://doi.org/10.1002/pssr.201700335 es_ES
dc.description.references Zhu T, Huhn WP, Wessler GC, Shin D, Saparov B, Mitzi DB, Blum V (2017) I2-II-IV-VI4(I = Cu, Ag; II = Sr, Ba; IV = Ge, Sn; VI = S, Se): chalcogenides for Thin-Film Photovoltaics. Chem Mater 29:7868–7879. https://doi.org/10.1021/acs.chemmater.7b02638 es_ES
dc.description.references Ge J, Grice CR, Yan Y (2017) Cu-based quaternary chalcogenide Cu2BaSnS4 thin films acting as hole transport layers in inverted perovskite CH3NH3PbI3 solar cells. J Mater Chem A 5:2920–2928. https://doi.org/10.1039/C6TA08426E es_ES
dc.description.references Chatterjee S, Pal AJ (2016) Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures. J Phys Chem C 120:1428–1437. https://doi.org/10.1021/acs.jpcc.5b11540 es_ES
dc.description.references Toghyani Rizi M, Shahrokh Abadi MH, Ghaneii M (2018) Two dimensional modeling of Cu2O heterojunction solar cells based-on β-Ga2O3buffer. Optik (Stuttg) 155:121–132. https://doi.org/10.1016/j.ijleo.2017.11.028 es_ES
dc.description.references Mihai R, Ninulescu V, Ph D (2017) Performance optimization of solar cells based on heterojunctions with Cu2O: numerical analysis. J Energy Eng 03:1–7. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000431 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem