Mostrar el registro sencillo del ítem
dc.contributor.author | Khattak, Yousaf Hameed | es_ES |
dc.contributor.author | Baig, Faisal | es_ES |
dc.contributor.author | Toura, Hanae | es_ES |
dc.contributor.author | Beg, Saira | es_ES |
dc.contributor.author | Marí, B. | es_ES |
dc.date.accessioned | 2020-12-31T04:31:13Z | |
dc.date.available | 2020-12-31T04:31:13Z | |
dc.date.issued | 2019-12 | es_ES |
dc.identifier.issn | 0022-2461 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/158175 | |
dc.description.abstract | [EN] Copper barium tin sulfide (CBTS) is a direct band gap earth abundant, non-toxic and quaternary semiconductor compound. It is used as absorber because of its direct band gap of 1.9 eV. A numerical guide is proposed for CBTS-based photovoltaic cell to enhance the efficiency of experimentally designed device with introducing Cu2O as back surface field (BSF) layer by means of numerical modeling. Device optimization was performed in SCAPS-1D software under 1.5 AM illumination spectrum. After introducing BSF layer and optimized physical parameters, promising result was achieved with PCE of 9.72%, V-oc of 0.81 V, J(sc) of 15.73 mA/cm(2) and FF of 78.23%. The promising outcomes of this work will give a guideline for the feasible production of high-efficiency inorganic CBTS-based photovoltaic cells. | es_ES |
dc.description.sponsorship | This work was supported by Ministerio de Economia y Competitividad (ENE2016-77798-C4-2-R) and Generalitat valenciana (Prometeus 2014/044). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Materials Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Performance | es_ES |
dc.subject | SR | es_ES |
dc.subject | BA | es_ES |
dc.subject | VI | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Efficiency Enhancement of Cu2BaSnS4 Experimental Thin film Solar Cell by Device Modeling | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10853-019-03942-6 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2016-77798-C4-2-R/ES/APROVECHAMIENTO DE LA LUZ SOLAR CON PROCESOS DE DOS FOTONES-TF/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F044/ES/Técnicas de Fabricación Avanzada y Control de Calidad de nuevos materiales multifuncionales en movilidad sostenible/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Khattak, YH.; Baig, F.; Toura, H.; Beg, S.; Marí, B. (2019). Efficiency Enhancement of Cu2BaSnS4 Experimental Thin film Solar Cell by Device Modeling. Journal of Materials Science. 54(24):14787-14796. https://doi.org/10.1007/s10853-019-03942-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10853-019-03942-6 | es_ES |
dc.description.upvformatpinicio | 14787 | es_ES |
dc.description.upvformatpfin | 14796 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 54 | es_ES |
dc.description.issue | 24 | es_ES |
dc.relation.pasarela | S\395469 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Küçükaçıl Artun G, Polat N, Yay OD, Özden Üzmez Ö, Arı A, Tuna Tuygun G, Elbir T, Altuğ H, Dumanoğlu Y, Döğeroğlu T, Dawood A, Odabasi M, Gaga EO (2017) An integrative approach for determination of air pollution and its health effects in a coal fired power plant area by passive sampling. Atmos Environ 150:331–345. https://doi.org/10.1016/j.atmosenv.2016.11.025 | es_ES |
dc.description.references | Khattak YH, Mahmood T, Alam K, Sarwar T, Ullah I, Ullah H, Ullah UH (2014) Inayat, Smart energy management system for utility source and photovoltaic power system using FPGA and ZigBee. Am J Electr Power Energy Syst 3:86–94. https://doi.org/10.11648/j.epes.20140305.11 | es_ES |
dc.description.references | Ge J, Koirala P, Grice CR, Roland PJ, Yu Y, Tan X, Ellingson RJ, Collins RW, Yan Y (2017) Oxygenated CdS buffer layers enabling high open-circuit voltages in earth-abundant Cu2BaSnS4 thin-film solar cells. Adv Energy Mater 7:160180301–160180310. https://doi.org/10.1002/aenm.201601803 | es_ES |
dc.description.references | Steinmann V, Brandt RE, Buonassisi T (2015) Non-cubic solar cell materials. Nat Photon 9:355–357. https://doi.org/10.1038/nphoton.2015.85 | es_ES |
dc.description.references | Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A, Friedlmeier TM, Powalla M (2015) Properties of Cu(In, Ga)Se 2 solar cells with new record efficiencies up to 21.7%. Phys Status Solidi Rapid Res Lett 9:28–31. https://doi.org/10.1002/pssr.201409520 | es_ES |
dc.description.references | Shin D, Saparov B, Mitzi DB (2017) Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials. Adv Energy Mater. https://doi.org/10.1002/aenm.201602366 | es_ES |
dc.description.references | Paper C, Le A, Universit D, Universit B, Universit MA, Marchionna S, Sistema R, View T, Le Donne A (2017) Earth-abundant thin film solar cells based on Cu2MnSnS4. In: European photovoltaic solar energy conference, pp 25–29 | es_ES |
dc.description.references | Khattak YH, Baig F, Ullah S, Marí B, Beg S, Ullah H (2018) Enhancement of the conversion efficiency of thin film kesterite solar cell. J Renew Sustain Energy 10:033514–03350101. https://doi.org/10.1063/1.5023478 | es_ES |
dc.description.references | Fontané MYVX, Izquierdo-Roca V, Saucedo E, Schorr S, Yukhymchuk VO, Pérez-Rodríguez JRMA (2012) Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe, Zn)SnS 4. J Alloy Compd J 539:190–194. https://doi.org/10.1016/j.jallcom.2012.06.042 | es_ES |
dc.description.references | Zhang X, Bao N, Ramasamy K, Wang YY-HA, Wang YY-HA, Lin B, Gupta A (2012) Crystal phase-controlled synthesis of Cu2FeSnS4 nanocrystals with a band gap of around 1.5 eV. Chem Commun. 48:4956–4958. https://doi.org/10.1039/c2cc31648j | es_ES |
dc.description.references | Mohammadnejad S, Baghban Parashkouh A (2017) CZTSSe solar cell efficiency improvement using a new band-gap grading model in absorber layer. Appl Phys A Mater Sci Process 123:1–9. https://doi.org/10.1007/s00339-017-1371-x | es_ES |
dc.description.references | Adewoyin AD, Olopade MA, Chendo M (2017) Enhancement of the conversion efficiency of Cu2ZnSnS4 thin film solar cell through the optimization of some device parameters. Optik (Stuttg) 133:122–131. https://doi.org/10.1016/j.ijleo.2017.01.008 | es_ES |
dc.description.references | Boutebakh FZ, Zeggar ML, Attaf N, Aida MS (2017) Electrical properties and back contact study of CZTS/ZnS heterojunction. Opt Int J Light Electron Opt 144:180–190. https://doi.org/10.1016/j.ijleo.2017.06.080 | es_ES |
dc.description.references | Ananthakumar S, Ram Kumar J, Moorthy Babu S (2016) Synthesis of Cu2ZnSnSe4 hierarchical nanostructures by colloidal method. Opt Int J Light Electron Opt 127:10360–10365. https://doi.org/10.1016/j.ijleo.2016.08.058 | es_ES |
dc.description.references | Oueslati H, Ben Rabeh M, Kanzari M (2018) Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method. Appl Phys A 1:18–339. https://doi.org/10.1007/s00339-018-1566-9 | es_ES |
dc.description.references | Khattak YH, Baig F, Ullah S, Marí B, Beg S, Ullah H (2018) Numerical modeling baseline for high efficiency (Cu 2 FeSnS 4) CFTS based thin film kesterite solar cell. Optik (Stuttg) 164:547–555. https://doi.org/10.1016/j.ijleo.2018.03.055 | es_ES |
dc.description.references | Khattak YH, Baig F, Ullah S, Soucase BM, Beg S, Ullah H, Marí B, Beg S, Ullah H (2018) Efficiency enhancement of Cu2FeSnS4 based thin film solar cell: a numerical analysis. J. Nanoelectron Optoelectron 13:1096–1101. https://doi.org/10.1166/jno.2018.2337 | es_ES |
dc.description.references | Xiao Z, Meng W, Li JV, Yan Y (2017) Distant-atom mutation for better earth-abundant light absorbers: a case study of Cu2BaSnSe4. ACS Energy Lett 2:29–35. https://doi.org/10.1021/acsenergylett.6b00577 | es_ES |
dc.description.references | Shin D, Saparov B, Zhu T, Huhn WP, Blum V, Mitzi DB (2016) BaCu2Sn(S, Se)4: earth-abundant chalcogenides for thin-film photovoltaics. Chem Mater 28:4771–4780. https://doi.org/10.1021/acs.chemmater.6b01832 | es_ES |
dc.description.references | Repins IL, Romero MJ, Li JV, Wei S-H, Kuciauskas D, Jiang C-S, Beall C, DeHart C, Mann J, Hsu W-C, Teeter G, Goodrich A, Noufi R (2013) Kesterite successes, ongoing work, and challenges: a perspective from vacuum deposition. IEEE J Photovolt 3:439–445. https://doi.org/10.1109/JPHOTOV.2012.2215842 | es_ES |
dc.description.references | Zhou H, Hsu W-CC, Duan H-SS, Bob B, Yang W, Bin Song T-B, Hsu C-JJ, Yang Y (2013) CZTS nanocrystals: a promising approach for next generation thin film photovoltaics. Energy Environ Sci 6:2822–2838. https://doi.org/10.1039/c3ee41627e | es_ES |
dc.description.references | Khattak YH, Baig F, Toura H, Ullah S, Marí B, Beg S, Ullah H (2018) Effect of CZTSe BSF and minority carrier life time on the efficiency enhancement of CZTS kesterite solar cell. Curr Appl Phys 18:633–641. https://doi.org/10.1016/j.cap.2018.03.013 | es_ES |
dc.description.references | Ge J, Roland PJ, Koirala P, Meng W, Young JL, Petersen R, Deutsch TG, Teeter G, Ellingson RJ, Collins RW, Yan Y (2017) Employing overlayers to improve the performance of Cu2BaSnS4 thin film based photoelectrochemical water reduction devices. Chem Mater 29:916–920. https://doi.org/10.1021/acs.chemmater.6b03347 | es_ES |
dc.description.references | Ge J, Yan Y (2017) Synthesis and characterization of photoelectrochemical and photovoltaic Cu2BaSnS4 thin films and solar cells. J Mater Chem C 5:6406–6419. https://doi.org/10.1039/C7TC01678F | es_ES |
dc.description.references | Hong F, Lin W, Meng W, Yan Y (2016) Trigonal Cu2-II-Sn-VI4(II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics. Phys Chem Chem Phys 18:4828–4834. https://doi.org/10.1039/C5CP06977G | es_ES |
dc.description.references | Todorov T, Gunawan O, Guha S (2016) A road towards 25% efficiency and beyond: perovskite tandem solar cells. Mol Syst Des Eng 1:370–376. https://doi.org/10.1039/C6ME00041J | es_ES |
dc.description.references | Baig F, Khattak YH, Mari B, Ullah S, Ullah H, Ahmed S (2018) Efficiency enhancement of SnS solar cell using back surface field. In: 2018 1st international conference power, energy smart grid, IEEE, pp 1–5. https://doi.org/10.1109/icpesg.2018.8384496 | es_ES |
dc.description.references | Baig F, Ullah H, Khattak YH, Mari Soucase B (2016) Numerical analysis of SnS Photovoltaic cells. In: 2016 international renewable sustainable energy conference, IEEE, pp 596–600. https://doi.org/10.1109/irsec.2016.7983899 | es_ES |
dc.description.references | Burgelman M, Nollet P, Degrave S (2000) Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361–362:527–532. https://doi.org/10.1016/S0040-6090(99)00825-1 | es_ES |
dc.description.references | Jabr RA, Hamad M, Mohanna YM (2007) Newton-Raphson solution of Poisson’s equation in a Pn diode. Int J Electr Eng Educ 44:23–33. https://doi.org/10.7227/IJEEE.44.1.3 | es_ES |
dc.description.references | Hu CC (2010) Modern semiconductor devices for integrated circuits | es_ES |
dc.description.references | Khattak YH (2019) Modeling of high power conversion efficiency thin film solar cells. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118802 | es_ES |
dc.description.references | Shin D, Zhu T, Huang X, Gunawan O, Blum V, Mitzi DB (2017) Earth-abundant chalcogenide photovoltaic devices with over 5% efficiency based on a Cu2BaSn(S, Se)4 Absorber. Adv Mater 29:1–7. https://doi.org/10.1002/adma.201606945 | es_ES |
dc.description.references | Saha U, Alam MK (2018) Proposition of an environment friendly triple junction solar cell based on earth abundant CBTSSe/CZTS/ACZTSe materials. Phys Status Solidi Rapid Res Lett 12:1–5. https://doi.org/10.1002/pssr.201700335 | es_ES |
dc.description.references | Zhu T, Huhn WP, Wessler GC, Shin D, Saparov B, Mitzi DB, Blum V (2017) I2-II-IV-VI4(I = Cu, Ag; II = Sr, Ba; IV = Ge, Sn; VI = S, Se): chalcogenides for Thin-Film Photovoltaics. Chem Mater 29:7868–7879. https://doi.org/10.1021/acs.chemmater.7b02638 | es_ES |
dc.description.references | Ge J, Grice CR, Yan Y (2017) Cu-based quaternary chalcogenide Cu2BaSnS4 thin films acting as hole transport layers in inverted perovskite CH3NH3PbI3 solar cells. J Mater Chem A 5:2920–2928. https://doi.org/10.1039/C6TA08426E | es_ES |
dc.description.references | Chatterjee S, Pal AJ (2016) Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures. J Phys Chem C 120:1428–1437. https://doi.org/10.1021/acs.jpcc.5b11540 | es_ES |
dc.description.references | Toghyani Rizi M, Shahrokh Abadi MH, Ghaneii M (2018) Two dimensional modeling of Cu2O heterojunction solar cells based-on β-Ga2O3buffer. Optik (Stuttg) 155:121–132. https://doi.org/10.1016/j.ijleo.2017.11.028 | es_ES |
dc.description.references | Mihai R, Ninulescu V, Ph D (2017) Performance optimization of solar cells based on heterojunctions with Cu2O: numerical analysis. J Energy Eng 03:1–7. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000431 | es_ES |