- -

Comparison of Single Image Processing Techniques and Their Combination for Detection of Weed in Lawns

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison of Single Image Processing Techniques and Their Combination for Detection of Weed in Lawns

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Parra-Boronat, Lorena es_ES
dc.contributor.author Parra-Boronat, Mar es_ES
dc.contributor.author Torices, Virginia es_ES
dc.contributor.author Marín, José es_ES
dc.contributor.author Mauri, Pedro V. es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2021-01-05T04:31:25Z
dc.date.available 2021-01-05T04:31:25Z
dc.date.issued 2019 es_ES
dc.identifier.issn 1942-2679 es_ES
dc.identifier.uri http://hdl.handle.net/10251/158241
dc.description.abstract [EN] The detection of weeds in lawns is important due to the different negative effects of its presence. Those effects include a lack of uniformity and competition for the resources. If the weeds are detected early the phytosanitary treatment, which includes the use of toxic substances, will be more effective and will be applied to a smaller surface. In this paper, we propose the use of image processing techniques for weed detection in urban lawns. The proposed methodology is based on simple techniques in order to ensure that they can be applied in-situ. We propose two techniques, one of them is based on the mathematical combination of the red, green and blue bands of an image. In this case, two mathematical operations are proposed to detect the presence of weeds, according to the different colorations of plants. On the other hand, we proposed the use of edge detection techniques to differentiate the surface covered by grass from the surface covered by weeds. In this case, we compared 12 different filters and their combinations. The best results were obtained with the Laplacian filter. Moreover, we proposed to use pre-processing and post-processing operations to remove the soil and to aggregate the data with the aim of reducing the number of false positives. Finally, we compared both methods and their combination. Our results show that both methods are promising, and its combination reduces the number of false positives (0 false positives in the 4 evaluated images) ensuring the detection of all weeds. es_ES
dc.description.sponsorship This work is partially found by the Conselleria de Educación, Cultura y Deporte with the Subvenciones para la contratación de personal investigador en fase postdoctoral, grant number APOSTD/2019/04, by European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR, and by the European Union with the "Fondo Europeo Agrícola de Desarrollo Rural (FEADER) - Europa invierte en zonas rurales", the MAPAMA, and Comunidad de Madrid with the IMIDRA, under the mark of the PDR-CM 2014-2020 project number PDR18-XEROCESPED. es_ES
dc.language Inglés es_ES
dc.publisher IARIA es_ES
dc.relation.ispartof International Journal On Advances in Intelligent Systems es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Grass lawns es_ES
dc.subject Weeds es_ES
dc.subject Image processing es_ES
dc.subject RGB bands es_ES
dc.subject Edge detection es_ES
dc.subject Drone es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Comparison of Single Image Processing Techniques and Their Combination for Detection of Weed in Lawns es_ES
dc.type Artículo es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/609475/EU/EURO-MEDITERRANEAN Cooperation through ERANET joint activities and beyond/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MAPAMA//PDR18-XEROCESPED/ES/Ensayos de mezclas de cespitosas más sostenibles para jardinería pública/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//ERANETMED3-227 SMARTWATIR/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F047/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Parra-Boronat, L.; Parra-Boronat, M.; Torices, V.; Marín, J.; Mauri, PV.; Lloret, J. (2019). Comparison of Single Image Processing Techniques and Their Combination for Detection of Weed in Lawns. International Journal On Advances in Intelligent Systems. 12(3-4):177-190. http://hdl.handle.net/10251/158241 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.iariajournals.org/intelligent_systems/ es_ES
dc.description.upvformatpinicio 177 es_ES
dc.description.upvformatpfin 190 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 3-4 es_ES
dc.relation.pasarela S\411598 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Agricultura, Pesca, Alimentación y Medio Ambiente es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem