- -

Superconvergent patch recovery with constraints for three-dimensional contact problems within the Cartesian grid Finite Element Method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Superconvergent patch recovery with constraints for three-dimensional contact problems within the Cartesian grid Finite Element Method

Mostrar el registro completo del ítem

Navarro-Jiménez, J.; Navarro-García, H.; Tur Valiente, M.; Ródenas, JJ. (2020). Superconvergent patch recovery with constraints for three-dimensional contact problems within the Cartesian grid Finite Element Method. International Journal for Numerical Methods in Engineering. 121(6):1297-1313. https://doi.org/10.1002/nme.6266

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/158399

Ficheros en el ítem

Metadatos del ítem

Título: Superconvergent patch recovery with constraints for three-dimensional contact problems within the Cartesian grid Finite Element Method
Autor: Navarro-Jiménez, José-Manuel Navarro-García, Héctor Tur Valiente, Manuel Ródenas, Juan José
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] The superconvergent patch recovery technique with constraints (SPR-C) consists in improving the accuracy of the recovered stresses obtained with the original SPR technique by considering known information about the ...[+]
Palabras clave: Cartesian grid , Contact , Immersed boundary , Superconvergent patch recovery
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal for Numerical Methods in Engineering. (issn: 0029-5981 )
DOI: 10.1002/nme.6266
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/nme.6266
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89816-R/ES/MODELADO PERSONALIZADO DE LA RESPUESTA DEL TEJIDO OSEO DE PACIENTES A PARTIR DE IMAGENES 3D MEDIANTE MALLADOS CARTESIANOS DE ELEMENTOS FINITOS/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/
info:eu-repo/grantAgreement/MECD//FPU17%2F03993/
Descripción: "This is the peer reviewed version of the following article: Navarro-Jiménez, José M., Héctor Navarro-García, Manuel Tur, and Juan J. Ródenas. 2019. Superconvergent Patch Recovery with Constraints for Three-dimensional Contact Problems within the Cartesian Grid Finite Element Method. International Journal for Numerical Methods in Engineering 121 (6). Wiley: 1297 1313. doi:10.1002/nme.6266, which has been published in final form at https://doi.org/10.1002/nme.6266. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Agradecimientos:
The authors would like to thank Generalitat Valenciana (PROMETEO/2016/007), the Spanish Ministerio de Economía, Industria y Competitividad (DPI2017-89816-R), the Spanish Ministerio de Ciencia, Innovación y Universidades ...[+]
Tipo: Artículo

References

Wriggers, P. (2006). Computational Contact Mechanics. doi:10.1007/978-3-540-32609-0

Marco, O., Sevilla, R., Zhang, Y., Ródenas, J. J., & Tur, M. (2015). Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. International Journal for Numerical Methods in Engineering, 103(6), 445-468. doi:10.1002/nme.4914

Navarro-Jiménez, J. M., Tur, M., Albelda, J., & Ródenas, J. J. (2018). Large deformation frictional contact analysis with immersed boundary method. Computational Mechanics, 62(4), 853-870. doi:10.1007/s00466-017-1533-x [+]
Wriggers, P. (2006). Computational Contact Mechanics. doi:10.1007/978-3-540-32609-0

Marco, O., Sevilla, R., Zhang, Y., Ródenas, J. J., & Tur, M. (2015). Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. International Journal for Numerical Methods in Engineering, 103(6), 445-468. doi:10.1002/nme.4914

Navarro-Jiménez, J. M., Tur, M., Albelda, J., & Ródenas, J. J. (2018). Large deformation frictional contact analysis with immersed boundary method. Computational Mechanics, 62(4), 853-870. doi:10.1007/s00466-017-1533-x

Marco, O., Ródenas, J. J., Navarro-Jiménez, J. M., & Tur, M. (2017). Robust h-adaptive meshing strategy considering exact arbitrary CAD geometries in a Cartesian grid framework. Computers & Structures, 193, 87-109. doi:10.1016/j.compstruc.2017.08.004

Ródenas, J. J., Tur, M., Fuenmayor, F. J., & Vercher, A. (2007). Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. International Journal for Numerical Methods in Engineering, 70(6), 705-727. doi:10.1002/nme.1903

Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery (SPR) and adaptive finite element refinement. Computer Methods in Applied Mechanics and Engineering, 101(1-3), 207-224. doi:10.1016/0045-7825(92)90023-d

Ródenas, J. J., González-Estrada, O. A., Díez, P., & Fuenmayor, F. J. (2010). Accurate recovery-based upper error bounds for the extended finite element framework. Computer Methods in Applied Mechanics and Engineering, 199(37-40), 2607-2621. doi:10.1016/j.cma.2010.04.010

Blacker, T., & Belytschko, T. (1994). Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. International Journal for Numerical Methods in Engineering, 37(3), 517-536. doi:10.1002/nme.1620370309

Díez, P., José Ródenas, J., & Zienkiewicz, O. C. (2007). Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. International Journal for Numerical Methods in Engineering, 69(10), 2075-2098. doi:10.1002/nme.1837

Nadal, E., Díez, P., Ródenas, J. J., Tur, M., & Fuenmayor, F. J. (2015). A recovery-explicit error estimator in energy norm for linear elasticity. Computer Methods in Applied Mechanics and Engineering, 287, 172-190. doi:10.1016/j.cma.2015.01.013

Badia, S., Verdugo, F., & Martín, A. F. (2018). The aggregated unfitted finite element method for elliptic problems. Computer Methods in Applied Mechanics and Engineering, 336, 533-553. doi:10.1016/j.cma.2018.03.022

Zienkiewicz, O. C., Zhu, J. Z., & Wu, J. (1993). Superconvergent patch recovery techniques - some further tests. Communications in Numerical Methods in Engineering, 9(3), 251-258. doi:10.1002/cnm.1640090309

FUENMAYOR, F. J., & OLIVER, J. L. (1996). CRITERIA TO ACHIEVE NEARLY OPTIMAL MESHES IN THEh-ADAPTIVE FINITE ELEMENT METHOD. International Journal for Numerical Methods in Engineering, 39(23), 4039-4061. doi:10.1002/(sici)1097-0207(19961215)39:23<4039::aid-nme37>3.0.co;2-c

Babuška, I., Strouboulis, T., & Upadhyay, C. . (1994). A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. Computer Methods in Applied Mechanics and Engineering, 114(3-4), 307-378. doi:10.1016/0045-7825(94)90177-5

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem