Wriggers, P. (2006). Computational Contact Mechanics. doi:10.1007/978-3-540-32609-0
Marco, O., Sevilla, R., Zhang, Y., Ródenas, J. J., & Tur, M. (2015). Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. International Journal for Numerical Methods in Engineering, 103(6), 445-468. doi:10.1002/nme.4914
Navarro-Jiménez, J. M., Tur, M., Albelda, J., & Ródenas, J. J. (2018). Large deformation frictional contact analysis with immersed boundary method. Computational Mechanics, 62(4), 853-870. doi:10.1007/s00466-017-1533-x
[+]
Wriggers, P. (2006). Computational Contact Mechanics. doi:10.1007/978-3-540-32609-0
Marco, O., Sevilla, R., Zhang, Y., Ródenas, J. J., & Tur, M. (2015). Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. International Journal for Numerical Methods in Engineering, 103(6), 445-468. doi:10.1002/nme.4914
Navarro-Jiménez, J. M., Tur, M., Albelda, J., & Ródenas, J. J. (2018). Large deformation frictional contact analysis with immersed boundary method. Computational Mechanics, 62(4), 853-870. doi:10.1007/s00466-017-1533-x
Marco, O., Ródenas, J. J., Navarro-Jiménez, J. M., & Tur, M. (2017). Robust h-adaptive meshing strategy considering exact arbitrary CAD geometries in a Cartesian grid framework. Computers & Structures, 193, 87-109. doi:10.1016/j.compstruc.2017.08.004
Ródenas, J. J., Tur, M., Fuenmayor, F. J., & Vercher, A. (2007). Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. International Journal for Numerical Methods in Engineering, 70(6), 705-727. doi:10.1002/nme.1903
Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery (SPR) and adaptive finite element refinement. Computer Methods in Applied Mechanics and Engineering, 101(1-3), 207-224. doi:10.1016/0045-7825(92)90023-d
Ródenas, J. J., González-Estrada, O. A., Díez, P., & Fuenmayor, F. J. (2010). Accurate recovery-based upper error bounds for the extended finite element framework. Computer Methods in Applied Mechanics and Engineering, 199(37-40), 2607-2621. doi:10.1016/j.cma.2010.04.010
Blacker, T., & Belytschko, T. (1994). Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. International Journal for Numerical Methods in Engineering, 37(3), 517-536. doi:10.1002/nme.1620370309
Díez, P., José Ródenas, J., & Zienkiewicz, O. C. (2007). Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. International Journal for Numerical Methods in Engineering, 69(10), 2075-2098. doi:10.1002/nme.1837
Nadal, E., Díez, P., Ródenas, J. J., Tur, M., & Fuenmayor, F. J. (2015). A recovery-explicit error estimator in energy norm for linear elasticity. Computer Methods in Applied Mechanics and Engineering, 287, 172-190. doi:10.1016/j.cma.2015.01.013
Badia, S., Verdugo, F., & Martín, A. F. (2018). The aggregated unfitted finite element method for elliptic problems. Computer Methods in Applied Mechanics and Engineering, 336, 533-553. doi:10.1016/j.cma.2018.03.022
Zienkiewicz, O. C., Zhu, J. Z., & Wu, J. (1993). Superconvergent patch recovery techniques - some further tests. Communications in Numerical Methods in Engineering, 9(3), 251-258. doi:10.1002/cnm.1640090309
FUENMAYOR, F. J., & OLIVER, J. L. (1996). CRITERIA TO ACHIEVE NEARLY OPTIMAL MESHES IN THEh-ADAPTIVE FINITE ELEMENT METHOD. International Journal for Numerical Methods in Engineering, 39(23), 4039-4061. doi:10.1002/(sici)1097-0207(19961215)39:23<4039::aid-nme37>3.0.co;2-c
Babuška, I., Strouboulis, T., & Upadhyay, C. . (1994). A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. Computer Methods in Applied Mechanics and Engineering, 114(3-4), 307-378. doi:10.1016/0045-7825(94)90177-5
[-]