- -

Bridges of biomaterials promote nigrostriatal pathway regeneration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bridges of biomaterials promote nigrostriatal pathway regeneration

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gómez Pinedo, Ulises es_ES
dc.contributor.author Sanchez-Rojas, Leyre es_ES
dc.contributor.author Vidueira, Sandra es_ES
dc.contributor.author Sancho, Francisco J. es_ES
dc.contributor.author Martínez-Ramos, Cristina es_ES
dc.contributor.author Lebourg, Myriam es_ES
dc.contributor.author Monleón Pradas, Manuel es_ES
dc.contributor.author Barcia, Juan A. es_ES
dc.date.accessioned 2021-01-09T04:31:49Z
dc.date.available 2021-01-09T04:31:49Z
dc.date.issued 2019-01 es_ES
dc.identifier.issn 1552-4973 es_ES
dc.identifier.uri http://hdl.handle.net/10251/158496
dc.description.abstract [EN] Repair of central nervous system (CNS) lesions is difficulted by the lack of ability of central axons to regrow, and the blocking by the brain astrocytes to axonal entry. We hypothesized that by using bridges made of porous biomaterial and permissive olfactory ensheathing glia (OEG), we could provide a scaffold to permit restoration of white matter tracts. We implanted porous polycaprolactone (PCL) bridges between the substantia nigra and the striatum in rats, both with and without OEG. We compared the number of tyrosine-hydroxylase positive (TH+) fibers crossing the striatal-graft interface, and the astrocytic and microglial reaction around the grafts, between animals grafted with and without OEG. Although TH+ fibers were found inside the grafts made of PCL alone, there was a greater fiber density inside the graft and at the striatal-graft interface when OEG was cografted. Also, there was less astrocytic and microglial reaction in those animals. These results show that these PCL grafts are able to promote axonal growth along the nigrostriatal pathway, and that cografting of OEG markedly enhances axonal entry inside the grafts, growth within them, and re-entry of axons into the CNS. These results may have implications in the treatment of diseases such as Parkinson's and others associated with lesions of central white matter tracts. es_ES
dc.description.sponsorship Contract grant sponsor: Regional Government Health Department (Conselleria de Sanitat, Generalitat Valenciana) and Carlos III Health Institute of the Ministry of Health and Consumer Affairs (Spain) (Regenerative Medicine Programme) Contract grant sponsor: Spanish ministry of Education and Science; contract grant number: MAT 2006-13554-C02-02 Contract grant sponsor: Red de Terapia Celular TERCEL (RETICS), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovacion (ISCIII); contract grant number: RD12/0019/0010 (to J.A.) Contract grant sponsor: Spanish Science & Innovation Ministery; contract grant number: MAT2008-06434 (to M.M.P.) Contract grant sponsor: "Convenio de Colaboracion para la Investigacion Basica y Traslacional en Medicina Regenerativa," Instituto Nacional de Salud Carlos III, the Conselleria de Sanidad of the Generalitat Valenciana, and the Foundation Centro de Investigacion Principe Felipe es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Biomedical Materials Research Part B Applied Biomaterials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biomaterials es_ES
dc.subject Polycaprolactone es_ES
dc.subject Ensheathing glia es_ES
dc.subject Axonal growth es_ES
dc.subject Neurodegenerative diseases es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Bridges of biomaterials promote nigrostriatal pathway regeneration es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/jbm.b.34110 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MAT2006-13554-C02-02/ES/EVALUACION INVIVO E INVITRO DE MATERIALES BIOCOMPATIBLES CON EL SISTEMA NERVIOSO CENTRAL: SUPERVIVENCIA Y DIFERENCIACION NEURONAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RD12%2F0019%2F0010/ES/Terapia Celular/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2008-06434/ES/MATERIALES PARA REGENERACION NEURAL Y ANGIOGENESIS EN EL SISTEMA NERVIOSO CENTRAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PRI-PIMNEU-2011-1372/ES/MATERIALES BIFUNCIONALES PARA LA REGENERACION NEURAL DE AREAS AFECTADAS POR ICTUS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Gómez Pinedo, U.; Sanchez-Rojas, L.; Vidueira, S.; Sancho, FJ.; Martínez-Ramos, C.; Lebourg, M.; Monleón Pradas, M.... (2019). Bridges of biomaterials promote nigrostriatal pathway regeneration. Journal of Biomedical Materials Research Part B Applied Biomaterials. 107(1):190-196. https://doi.org/10.1002/jbm.b.34110 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/jbm.b.34110 es_ES
dc.description.upvformatpinicio 190 es_ES
dc.description.upvformatpfin 196 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 107 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 29573127 es_ES
dc.relation.pasarela S\399793 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Pekny, M., Wilhelmsson, U., & Pekna, M. (2014). The dual role of astrocyte activation and reactive gliosis. Neuroscience Letters, 565, 30-38. doi:10.1016/j.neulet.2013.12.071 es_ES
dc.description.references Bliss, T. M., Andres, R. H., & Steinberg, G. K. (2010). Optimizing the success of cell transplantation therapy for stroke. Neurobiology of Disease, 37(2), 275-283. doi:10.1016/j.nbd.2009.10.003 es_ES
dc.description.references Tam, R. Y., Fuehrmann, T., Mitrousis, N., & Shoichet, M. S. (2013). Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach. Neuropsychopharmacology, 39(1), 169-188. doi:10.1038/npp.2013.237 es_ES
dc.description.references Skop, N. B., Calderon, F., Cho, C. H., Gandhi, C. D., & Levison, S. W. (2014). Improvements in biomaterial matrices for neural precursor cell transplantation. Molecular and Cellular Therapies, 2(1), 19. doi:10.1186/2052-8426-2-19 es_ES
dc.description.references Yasuhara, T., Kameda, M., Sasaki, T., Tajiri, N., & Date, I. (2017). Cell Therapy for Parkinson’s Disease. Cell Transplantation, 26(9), 1551-1559. doi:10.1177/0963689717735411 es_ES
dc.description.references Orive, G., Anitua, E., Pedraz, J. L., & Emerich, D. F. (2009). Biomaterials for promoting brain protection, repair and regeneration. Nature Reviews Neuroscience, 10(9), 682-692. doi:10.1038/nrn2685 es_ES
dc.description.references Walker, P. A., Aroom, K. R., Jimenez, F., Shah, S. K., Harting, M. T., Gill, B. S., & Cox, C. S. (2009). Advances in Progenitor Cell Therapy Using Scaffolding Constructs for Central Nervous System Injury. Stem Cell Reviews and Reports, 5(3), 283-300. doi:10.1007/s12015-009-9081-1 es_ES
dc.description.references Zhong, Y., & Bellamkonda, R. V. (2008). Biomaterials for the central nervous system. Journal of The Royal Society Interface, 5(26), 957-975. doi:10.1098/rsif.2008.0071 es_ES
dc.description.references Pérez‐GarnezM BarciaJA Gómez‐PinedoU Monleón‐PradasM Vallés‐LluchA.Materials for Central Nervous System Tissue Engineering Cells and Biomaterials in Regenerative Medicine. InTech;2014. Chap 7. es_ES
dc.description.references Sinha, V. R., Bansal, K., Kaushik, R., Kumria, R., & Trehan, A. (2004). Poly-ϵ-caprolactone microspheres and nanospheres: an overview. International Journal of Pharmaceutics, 278(1), 1-23. doi:10.1016/j.ijpharm.2004.01.044 es_ES
dc.description.references Raisman, G. (2001). Olfactory ensheathing cells — another miracle cure for spinal cord injury? Nature Reviews Neuroscience, 2(5), 369-375. doi:10.1038/35072576 es_ES
dc.description.references Raisman, G., & Li, Y. (2007). Repair of neural pathways by olfactory ensheathing cells. Nature Reviews Neuroscience, 8(4), 312-319. doi:10.1038/nrn2099 es_ES
dc.description.references Fairless, R., & Barnett, S. C. (2005). Olfactory ensheathing cells: their role in central nervous system repair. The International Journal of Biochemistry & Cell Biology, 37(4), 693-699. doi:10.1016/j.biocel.2004.10.010 es_ES
dc.description.references Collins, A., Li, D., Mcmahon, S. B., Raisman, G., & Li, Y. (2017). Transplantation of Cultured Olfactory Bulb Cells Prevents Abnormal Sensory Responses during Recovery from Dorsal Root Avulsion in the Rat. Cell Transplantation, 26(5), 913-924. doi:10.3727/096368917x695353 es_ES
dc.description.references Navarro, X., Valero, A., Gudiño, G., Forés, J., Rodríguez, F. J., Verdú, E., … Nieto-Sampedro, M. (1999). Ensheathing glia transplants promote dorsal root regeneration and spinal reflex restitution after multiple lumbar rhizotomy. Annals of Neurology, 45(2), 207-215. doi:10.1002/1531-8249(199902)45:2<207::aid-ana11>3.0.co;2-k es_ES
dc.description.references Gómez-Pinedo, U., Félez, M. C., Sancho-Bielsa, F. J., Vidueira, S., Cabanes, C., Soriano, M., … Barcia, J. A. (2008). Improved technique for stereotactic placement of nerve grafts between two locations inside the rat brain. Journal of Neuroscience Methods, 174(2), 194-201. doi:10.1016/j.jneumeth.2008.07.008 es_ES
dc.description.references HowardCV ReedMG.Unbiased Stereology: Three‐Dimensional Measurement in Microscopy. Oxford: Bioimaging Group;1998. es_ES
dc.description.references Collier, T. J., & Springer, J. E. (1991). Co-grafts of embryonic dopamine neurons and adult sciatic nerve into the denervated striatum enhance behavioral and morphological recovery in rats. Experimental Neurology, 114(3), 343-350. doi:10.1016/0014-4886(91)90160-e es_ES
dc.description.references Bourke, J. L., Coleman, H. A., Pham, V., Forsythe, J. S., & Parkington, H. C. (2014). Neuronal Electrophysiological Function and Control of Neurite Outgrowth on Electrospun Polymer Nanofibers Are Cell Type Dependent. Tissue Engineering Part A, 20(5-6), 1089-1095. doi:10.1089/ten.tea.2013.0295 es_ES
dc.description.references Nga, V. D. W., Lim, J., Choy, D. K. S., Nyein, M. A., Lu, J., Chou, N., … Teoh, S.-H. (2015). Effects of Polycaprolactone-Based Scaffolds on the Blood–Brain Barrier and Cerebral Inflammation. Tissue Engineering Part A, 21(3-4), 647-653. doi:10.1089/ten.tea.2013.0779 es_ES
dc.description.references Pérez-Garnés, M., Martínez-Ramos, C., Barcia, J. A., Escobar Ivirico, J. L., Gómez-Pinedo, U., Vallés-Lluch, A., & Monleón Pradas, M. (2012). One-Dimensional Migration of Olfactory Ensheathing Cells on Synthetic Materials: Experimental and Numerical Characterization. Cell Biochemistry and Biophysics, 65(1), 21-36. doi:10.1007/s12013-012-9399-1 es_ES
dc.description.references Diban, N., Ramos-Vivas, J., Remuzgo-Martinez, S., Ortiz, I., & Urtiaga, A. (2015). Poly(&#949;-caprolactone) Films with Favourable Properties for Neural Cell Growth. Current Topics in Medicinal Chemistry, 14(23), 2743-2749. doi:10.2174/1568026614666141215153932 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem