- -

Schauder bases and the decay rate of the heat equation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Schauder bases and the decay rate of the heat equation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bonet Solves, José Antonio es_ES
dc.contributor.author Lusky, Wolfgang es_ES
dc.contributor.author Taskinen, Jari es_ES
dc.date.accessioned 2021-01-09T04:32:00Z
dc.date.available 2021-01-09T04:32:00Z
dc.date.issued 2019-09 es_ES
dc.identifier.issn 1424-3199 es_ES
dc.identifier.uri http://hdl.handle.net/10251/158500
dc.description.abstract [EN] We consider the classical Cauchy problem for the linear heat equation and integrable initial data in the Euclidean space R-N. We show that given a weighted L-p-space L-w(p)(R-N) with 1 <= p < infinity and a fast-growing weight w, there are Schauder bases (e(n))(n = 1)(infinity) in L-w(p)(R-N) with the following property: given a positive integer m, there exists n(m) > 0 such that, if the initial data f belong to the closed linear space of e(n) with n >= n(m), then the decay rate of the solution of the heat equation is at least t(-m). Such a basis can be constructed as a perturbation of any given Schauder basis. The proof is based on a construction of a basis of L-w(p)(R-N), which annihilates an infinite sequence of bounded functionals. es_ES
dc.description.sponsorship Open access funding provided by University of Helsinki including Helsinki University Central Hospital. The authors would like to thank Thierry Gallay (Grenoble) for discussions which helped in the final formulation of our results. The research of Bonet was partially supported by the projects MTM2016-76647-P and GV Prometeo 2017/102. The research of Taskinen was partially supported by the research grant from the Faculty of Science of the University of Helsinki. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Evolution Equations es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Schauder bases and the decay rate of the heat equation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00028-019-00492-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bonet Solves, JA.; Lusky, W.; Taskinen, J. (2019). Schauder bases and the decay rate of the heat equation. Journal of Evolution Equations. 19(3):717-728. https://doi.org/10.1007/s00028-019-00492-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00028-019-00492-x es_ES
dc.description.upvformatpinicio 717 es_ES
dc.description.upvformatpfin 728 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\404831 es_ES
dc.contributor.funder Helsingin Yliopisto es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bricmont, J., Kupiainen, A., and Lin, G., Renormalization group and asymptotics of solutions of nonlinear parabolic equations. Comm. Pure Appl. Math. 47 (1994), 839–922. es_ES
dc.description.references Cazenave, T., Dickstein, F., Weissler, F., A solution of the heat equation with a continuum of decay rates. Elliptic and parabolic problems, 135–138, Prog. Nonlinear Differential Equations Appl., 63, Birkhäuser, Basel, 2005. 35K05 (35B40) es_ES
dc.description.references Escobedo, M., Kavian, O., Variational problems related to self-similar solutions of the heat equation. Nonlin. Anal. 11 (1987), 1103–1133. es_ES
dc.description.references Fila, M., Winkler, M., and Yanagida, E., Convergence rate for a parabolic equation with supercritical nonlinearity. J. Dyn. Diff. Eq 17 (2005), 249–269. es_ES
dc.description.references Fujita, H., On the blowing up of the solutions of the Cauchy problem for $$u_t = \Delta u + u^{1+ \alpha }$$ u t = Δ u + u 1 + α . J. Fac. Sci. Univ. Tokyo Sect IA 13 (1966), 109–124. es_ES
dc.description.references Gallay, Th., Wayne, C.E., Invariant Manifolds and the Long-Time Asymptotics of the Navier–Stokes and Vorticity Equations on $${\bf R}^2$$ R 2 . Arch. Rational Mech. Anal. 163 (2002), 209–258. es_ES
dc.description.references Gelbaum, B.R., Gil de Lamadrid, J., Bases of tensor products of Banach spaces. Pacific J. Math. 11 (1961), 1281–1286. es_ES
dc.description.references Giga, Y., A bound for global solutions of semilinear heat equations. Comm. Math. Phys. 103 (1986), 415–421. es_ES
dc.description.references Gmira, A., and Veron, L.: Large time behavior of the solutions of a semilinear parabolic equation in $${\bf R}^N$$ R N . J. Diff. Eq. 53 (1984), 258–276. es_ES
dc.description.references Ishige, K., and Kawakami, T., Asymptotic behavior of solutions for some semilinear heat equations in $$\mathbb{R}^N$$ R N . Commun. Pure Appl. Anal. 8 (2009), no. 4, 1351–1371. es_ES
dc.description.references Ishige, K., Kawakami, T., Refined asymptotic profiles for a semilinear heat equation. Math. Ann. 353 (2012), no. 1, 161–192. es_ES
dc.description.references Ishige, K., and Kawakami, T., Asymptotic expansions of solutions of the Cauchy problem for nonlinear parabolic equations. J. Anal. Math. 121 (2013), 317–351. es_ES
dc.description.references Kavian, O., Remarks on the large time behaviour of a nonlinear diffusion equation. Ann. Inst. H. Poincaré, Analyse Non Linéaire 4 (1987), 423–452. es_ES
dc.description.references Kawanago, T., Asymptotic behavior of solutions of a semilinear heat equation with subcritical nonlinearity. Ann. Inst. H. Poincaré, Analyse Non Linéaire 13 (1996), 1–15. es_ES
dc.description.references Kobayashi, K., Sirao, T., and Tanaka, H., On the growing up problem for semi–linear heat equations. J.Math. Soc. Japan 29 (1977), 407–424. es_ES
dc.description.references Lindenstrauss,J., Tzafriri, J., Classical Banach spaces I, Springer, Berlin, 1977. es_ES
dc.description.references Poláčik, P,. and Quittner, P., Asymptotic behavior of threshold and sub-threshold solutions of a semilinear heat equation. Asymptot. Anal. 57, 3–4 (2008), 125–141. es_ES
dc.description.references Quittner, P., The decay of global solutions of a semilinear heat equation. Discr. Cont. Dynamical Systems. 21,1(2008). 307–318. es_ES
dc.description.references Quittner, P., Souplet, Ph., Superlinear parabolic problems. Blow–up, global existence and steady states. Birkhäuser advanced texts, Basel, 2007. es_ES
dc.description.references Taskinen, J., Asymptotical behaviour of a class of semilinear diffusion equations. J. Evol. Eq. 7 (2007), 429–447. es_ES
dc.description.references Taskinen, J., Long-time asymptotics of sub-threshold solutions of a semilinear Cauchy problem. Diff. Eq. and Applications 3 (2) (2011), 279–297. es_ES
dc.description.references Wojtaszyck, P., Banach spaces for analysts. Cambridge Studies in Advanced Mathematics, vol 25. Cambridge University Press, Cambridge, 1991. es_ES
dc.description.references Zhao, H., Large time decay estimates of solutions of nonlinear parabolic equations. Discrete and Continuous Dynamical Systems 8,1 (2002), 69–144. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem