Mostrar el registro sencillo del ítem
dc.contributor.author | Di Serio, Francesco | es_ES |
dc.contributor.author | Torchetti, Enza Maria | es_ES |
dc.contributor.author | Daròs, José-Antonio | es_ES |
dc.contributor.author | Navarro, Beatriz | es_ES |
dc.date.accessioned | 2021-01-09T04:32:20Z | |
dc.date.available | 2021-01-09T04:32:20Z | |
dc.date.issued | 2019-04-18 | es_ES |
dc.identifier.issn | 1999-4915 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/158510 | |
dc.description.abstract | [EN] Composed of a few hundreds of nucleotides, viroids are infectious, circular, non-protein coding RNAs able to usurp plant cellular enzymes and molecular machineries to replicate and move in their hosts. Several secondary and tertiary RNA structural motifs have been implicated in the viroid infectious cycle, but whether modified nucleotides, such as 5C-methylcytosine (m(5)C), also play a role has not been deeply investigated so far. Here, the possible existence of m(5)C in both RNA polarity strands of potato spindle tuber viroid and avocado sunblotch viroid -which are representative members of the nucleus- and chloroplast-replicating viroids, respectively- has been assessed at single nucleotide level. We show that a standard bisulfite protocol efficiently used for identifying m(5)C in cellular RNAs may generate false positive results in the case of the highly structured viroid RNAs. Applying a bisulfite conversion protocol specifically adapted to RNAs with high secondary structure, no m(5)C was identified in both polarity strands of both viroids, indicating that this specific nucleotide modification does not likely play a role in viroid biology | es_ES |
dc.description.sponsorship | This project was partially funded by CNR Short-Term Mobility Programs (2013 and 2014 to FDS) and by the Spanish Ministerio de Ciencia, Innovacion y Universidades grant BIO2017-83184-R (co-financed FEDER funds). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Viruses | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Viroid RNA | es_ES |
dc.subject | Bisulfite sequencing | es_ES |
dc.subject | Nucleotide modification | es_ES |
dc.subject | C5-methylcytosine | es_ES |
dc.title | Reassessment of Viroid RNA Cytosine Methylation Status at the Single Nucleotide Level | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/v11040357 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-83184-R/ES/VIRUS DE PLANTAS: PATOGENOS Y TAMBIEN VECTORES PARA LA PRODUCCION DE PROTEINAS, METABOLITOS, RNAS Y NANOPARTICULAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Di Serio, F.; Torchetti, EM.; Daròs, J.; Navarro, B. (2019). Reassessment of Viroid RNA Cytosine Methylation Status at the Single Nucleotide Level. Viruses. 11(4):1-9. https://doi.org/10.3390/v11040357 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/v11040357 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.pmid | 31003406 | es_ES |
dc.identifier.pmcid | PMC6521008 | es_ES |
dc.relation.pasarela | S\406633 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Consiglio Nazionale delle Ricerche, Italia | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Sharp, P. A. (2009). The Centrality of RNA. Cell, 136(4), 577-580. doi:10.1016/j.cell.2009.02.007 | es_ES |
dc.description.references | Karikó, K., Buckstein, M., Ni, H., & Weissman, D. (2005). Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity, 23(2), 165-175. doi:10.1016/j.immuni.2005.06.008 | es_ES |
dc.description.references | Schwartz, S., Agarwala, S. D., Mumbach, M. R., Jovanovic, M., Mertins, P., Shishkin, A., … Regev, A. (2013). High-Resolution Mapping Reveals a Conserved, Widespread, Dynamic mRNA Methylation Program in Yeast Meiosis. Cell, 155(6), 1409-1421. doi:10.1016/j.cell.2013.10.047 | es_ES |
dc.description.references | Pan, T. (2013). N6-methyl-adenosine modification in messenger and long non-coding RNA. Trends in Biochemical Sciences, 38(4), 204-209. doi:10.1016/j.tibs.2012.12.006 | es_ES |
dc.description.references | Song, X., & Nazar, R. N. (2002). Modification of rRNA as a ‘quality control mechanism’ in ribosome biogenesis. FEBS Letters, 523(1-3), 182-186. doi:10.1016/s0014-5793(02)02986-1 | es_ES |
dc.description.references | Agris, P. F. (2004). Decoding the genome: a modified view. Nucleic Acids Research, 32(1), 223-238. doi:10.1093/nar/gkh185 | es_ES |
dc.description.references | Alexandrov, A., Chernyakov, I., Gu, W., Hiley, S. L., Hughes, T. R., Grayhack, E. J., & Phizicky, E. M. (2006). Rapid tRNA Decay Can Result from Lack of Nonessential Modifications. Molecular Cell, 21(1), 87-96. doi:10.1016/j.molcel.2005.10.036 | es_ES |
dc.description.references | Schaefer, M., & Lyko, F. (2009). Solving the Dnmt2 enigma. Chromosoma, 119(1), 35-40. doi:10.1007/s00412-009-0240-6 | es_ES |
dc.description.references | Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., … Rechavi, G. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485(7397), 201-206. doi:10.1038/nature11112 | es_ES |
dc.description.references | Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E., & Jaffrey, S. R. (2012). Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3′ UTRs and near Stop Codons. Cell, 149(7), 1635-1646. doi:10.1016/j.cell.2012.05.003 | es_ES |
dc.description.references | Cui, X., Liang, Z., Shen, L., Zhang, Q., Bao, S., Geng, Y., … Yu, H. (2017). 5-Methylcytosine RNA Methylation in Arabidopsis Thaliana. Molecular Plant, 10(11), 1387-1399. doi:10.1016/j.molp.2017.09.013 | es_ES |
dc.description.references | Edelheit, S., Schwartz, S., Mumbach, M. R., Wurtzel, O., & Sorek, R. (2013). Transcriptome-Wide Mapping of 5-methylcytidine RNA Modifications in Bacteria, Archaea, and Yeast Reveals m5C within Archaeal mRNAs. PLoS Genetics, 9(6), e1003602. doi:10.1371/journal.pgen.1003602 | es_ES |
dc.description.references | Schaefer, M., Pollex, T., Hanna, K., & Lyko, F. (2008). RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Research, 37(2), e12-e12. doi:10.1093/nar/gkn954 | es_ES |
dc.description.references | Pollex, T., Hanna, K., & Schaefer, M. (2010). Detection of Cytosine Methylation in RNA Using Bisulfite Sequencing. Cold Spring Harbor Protocols, 2010(10), pdb.prot5505-pdb.prot5505. doi:10.1101/pdb.prot5505 | es_ES |
dc.description.references | Squires, J. E., Patel, H. R., Nousch, M., Sibbritt, T., Humphreys, D. T., Parker, B. J., … Preiss, T. (2012). Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Research, 40(11), 5023-5033. doi:10.1093/nar/gks144 | es_ES |
dc.description.references | Amort, T., Soulière, M. F., Wille, A., Jia, X.-Y., Fiegl, H., Wörle, H., … Lusser, A. (2013). Long non-coding RNAs as targets for cytosine methylation. RNA Biology, 10(6), 1002-1008. doi:10.4161/rna.24454 | es_ES |
dc.description.references | Motorin, Y., & Helm, M. (2011). RNA nucleotide methylation. Wiley Interdisciplinary Reviews: RNA, 2(5), 611-631. doi:10.1002/wrna.79 | es_ES |
dc.description.references | Ding, B. (2009). The Biology of Viroid-Host Interactions. Annual Review of Phytopathology, 47(1), 105-131. doi:10.1146/annurev-phyto-080508-081927 | es_ES |
dc.description.references | Tsagris, E. M., Martínez de Alba, Á. E., Gozmanova, M., & Kalantidis, K. (2008). Viroids. Cellular Microbiology, 10(11), 2168-2179. doi:10.1111/j.1462-5822.2008.01231.x | es_ES |
dc.description.references | Flores, R., Minoia, S., Carbonell, A., Gisel, A., Delgado, S., López-Carrasco, A., … Di Serio, F. (2015). Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Research, 209, 136-145. doi:10.1016/j.virusres.2015.02.027 | es_ES |
dc.description.references | Navarro, B., Gisel, A., Rodio, M.-E., Delgado, S., Flores, R., & Di Serio, F. (2012). Viroids: How to infect a host and cause disease without encoding proteins. Biochimie, 94(7), 1474-1480. doi:10.1016/j.biochi.2012.02.020 | es_ES |
dc.description.references | Pallas, V., Navarro, A., & Flores, R. (1987). Isolation of a Viroid-like RNA from Hop Different from Hop Stunt Viroid. Journal of General Virology, 68(12), 3201-3205. doi:10.1099/0022-1317-68-12-3201 | es_ES |
dc.description.references | Goll, M. G., Kirpekar, F., Maggert, K. A., Yoder, J. A., Hsieh, C.-L., Zhang, X., … Bestor, T. H. (2006). Methylation of tRNAAsp by the DNA Methyltransferase Homolog Dnmt2. Science, 311(5759), 395-398. doi:10.1126/science.1120976 | es_ES |
dc.description.references | Ohno, T., Takamatsu, N., Meshi, T., & Okada, Y. (1983). Hop stunt viroid: molecular cloning and nucleotide sequence of the complete cDNA copy. Nucleic Acids Research, 11(18), 6185-6197. doi:10.1093/nar/11.18.6185 | es_ES |
dc.description.references | Trixl, L., & Lusser, A. (2018). The dynamic RNA modification 5‐methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdisciplinary Reviews: RNA, 10(1), e1510. doi:10.1002/wrna.1510 | es_ES |
dc.description.references | López-Carrasco, A., & Flores, R. (2016). Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A «naked» rod-like conformation similar but not identical to that observed in vitro. RNA Biology, 14(8), 1046-1054. doi:10.1080/15476286.2016.1223005 | es_ES |