Mostrar el registro sencillo del ítem
dc.contributor.author | Li, Dazhi | es_ES |
dc.contributor.author | Schroen, Martin | es_ES |
dc.contributor.author | Kohli, Markus | es_ES |
dc.contributor.author | Bogena, Heye | es_ES |
dc.contributor.author | Weimar, Jannis | es_ES |
dc.contributor.author | Jiménez Bello, Miguel Angel | es_ES |
dc.contributor.author | Han, Xujun | es_ES |
dc.contributor.author | Martínez-Gimeno, María Amparo | es_ES |
dc.contributor.author | Zacharias, Steffen | es_ES |
dc.contributor.author | Vereecken, Harry | es_ES |
dc.contributor.author | Franssen, Harrie-Jan Hendricks | es_ES |
dc.date.accessioned | 2021-01-09T04:32:26Z | |
dc.date.available | 2021-01-09T04:32:26Z | |
dc.date.issued | 2019-10-03 | es_ES |
dc.identifier.issn | 1539-1663 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/158513 | |
dc.description.abstract | [EN] Irrigation is essential for maintaining food production in water-scarce regions. The irrigation need depends on the water content of the soil, which we measured with the novel technique of cosmic-ray neutron sensing (CRNS). The potential of the CRNS technique for drip irrigation scheduling was explored in this study for the Picassent site near Valencia, Spain. To support the experimental evidence, the neutron transport simulation URANOS was used to simulate the effect of drip irrigation on the neutron counts. The overall soil water content (SWC) in the CRNS footprint was characterized with a root mean square error <0.03 cm3/cm3, but the experimental dataset indicated methodological limitations to detect drip water input. Both experimental data and simulation results suggest that the large¿area neutron response to drip irrigation is insignificant in our specific case using a standard CRNS probe. Because of the small area of irrigated patches and short irrigation time, the limited SWC changes due to drip irrigation were not visible from the measured neutron intensity changes. Our study shows that CRNS modeling can be used to assess the suitability of the CRNS technique for certain applications. While the standard CRNS probe was not able to detect small¿scale drip irrigation patterns, the method might be applicable for larger irrigated areas, in drier regions, and for longer and more intense irrigation periods. Since statistical noise is the main limitation of the CRNS measurement, the capability of the instrument could be improved in future studies by larger and more efficient neutron detectors. | es_ES |
dc.description.sponsorship | Dazhi Li was funded by a stipend from the government of China (CSC scholarship). The research was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Project 414050972, Research Unit FOR 2694 "Cosmic Sense." We are also thankful to our colleagues at the Instituto Valenciano de Investigaciones Agrarias and Universitat Politecnica de Valencia for the installation of the soil moisture sensors and for conducting field measurements | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Soil Science Society of America | es_ES |
dc.relation.ispartof | Vadose Zone Journal | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.subject.classification | MECANICA DE FLUIDOS | es_ES |
dc.title | Can Drip Irrigation be Scheduled with Cosmic-Ray Neutron Sensing? | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.2136/vzj2019.05.0053 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DFG//414050972/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DFG//FOR 2694/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Li, D.; Schroen, M.; Kohli, M.; Bogena, H.; Weimar, J.; Jiménez Bello, MA.; Han, X.... (2019). Can Drip Irrigation be Scheduled with Cosmic-Ray Neutron Sensing?. Vadose Zone Journal. 18(1):1-13. https://doi.org/10.2136/vzj2019.05.0053 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.2136/vzj2019.05.0053 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\394901 | es_ES |
dc.contributor.funder | Deutsche Forschungsgemeinschaft | es_ES |
dc.description.references | Andreasen, M., Jensen, K. H., Desilets, D., Franz, T. E., Zreda, M., Bogena, H. R., & Looms, M. C. (2017). Status and Perspectives on the Cosmic-Ray Neutron Method for Soil Moisture Estimation and Other Environmental Science Applications. Vadose Zone Journal, 16(8), vzj2017.04.0086. doi:10.2136/vzj2017.04.0086 | es_ES |
dc.description.references | Baatz, R., Bogena, H. R., Hendricks Franssen, H. ‐J., Huisman, J. A., Montzka, C., & Vereecken, H. (2015). An empirical vegetation correction for soil water content quantification using cosmic ray probes. Water Resources Research, 51(4), 2030-2046. doi:10.1002/2014wr016443 | es_ES |
dc.description.references | Baatz, R., Bogena, H. R., Hendricks Franssen, H.-J., Huisman, J. A., Qu, W., Montzka, C., & Vereecken, H. (2014). Calibration of a catchment scale cosmic-ray probe network: A comparison of three parameterization methods. Journal of Hydrology, 516, 231-244. doi:10.1016/j.jhydrol.2014.02.026 | es_ES |
dc.description.references | Barker, J. B., Franz, T. E., Heeren, D. M., Neale, C. M. U., & Luck, J. D. (2017). Soil water content monitoring for irrigation management: A geostatistical analysis. Agricultural Water Management, 188, 36-49. doi:10.1016/j.agwat.2017.03.024 | es_ES |
dc.description.references | Bogena, H. R., Huisman, J. A., Baatz, R., Hendricks Franssen, H.-J., & Vereecken, H. (2013). Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario. Water Resources Research, 49(9), 5778-5791. doi:10.1002/wrcr.20463 | es_ES |
dc.description.references | Desilets, D., Zreda, M., & Ferré, T. P. A. (2010). Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water Resources Research, 46(11). doi:10.1029/2009wr008726 | es_ES |
dc.description.references | 1991 North Carolina Coop. Ext. Serv. Raleigh R.O. Evans R.E. Sneed D.K. Cassel Irrigation scheduling to improve water‐ and energy‐use efficiencies | es_ES |
dc.description.references | Fares, A., & Alva, A. K. (2000). Evaluation of capacitance probes for optimal irrigation of citrus through soil moisture monitoring in an entisol profile. Irrigation Science, 19(2), 57-64. doi:10.1007/s002710050001 | es_ES |
dc.description.references | Fersch, B., Jagdhuber, T., Schrön, M., Völksch, I., & Jäger, M. (2018). Synergies for Soil Moisture Retrieval Across Scales From Airborne Polarimetric SAR, Cosmic Ray Neutron Roving, and an In Situ Sensor Network. Water Resources Research, 54(11), 9364-9383. doi:10.1029/2018wr023337 | es_ES |
dc.description.references | Franz, T. E., Zreda, M., Rosolem, R., & Ferre, T. P. A. (2013). A universal calibration function for determination of soil moisture with cosmic-ray neutrons. Hydrology and Earth System Sciences, 17(2), 453-460. doi:10.5194/hess-17-453-2013 | es_ES |
dc.description.references | Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003 | es_ES |
dc.description.references | Han, X., Hendricks Franssen, H.-J., Jiménez Bello, M. Á., Rosolem, R., Bogena, H., Alzamora, F. M., … Vereecken, H. (2016). Simultaneous soil moisture and properties estimation for a drip irrigated field by assimilating cosmic-ray neutron intensity. Journal of Hydrology, 539, 611-624. doi:10.1016/j.jhydrol.2016.05.050 | es_ES |
dc.description.references | Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., & Zacharias, S. (2015). Footprint characteristics revised for field‐scale soil moisture monitoring with cosmic‐ray neutrons. Water Resources Research, 51(7), 5772-5790. doi:10.1002/2015wr017169 | es_ES |
dc.description.references | 2013 Washington State Univ. Ext. Pullman R.T. Peters K. Desta L. Nelson Practical use of soil moisture sensors and their data for irrigation scheduling | es_ES |
dc.description.references | Rosolem, R., Shuttleworth, W. J., Zreda, M., Franz, T. E., Zeng, X., & Kurc, S. A. (2013). The Effect of Atmospheric Water Vapor on Neutron Count in the Cosmic-Ray Soil Moisture Observing System. Journal of Hydrometeorology, 14(5), 1659-1671. doi:10.1175/jhm-d-12-0120.1 | es_ES |
dc.description.references | Schreiner-McGraw, A. P., Vivoni, E. R., Mascaro, G., & Franz, T. E. (2016). Closing the water balance with cosmic-ray soil moisture measurements and assessing their relation to evapotranspiration in two semiarid watersheds. Hydrology and Earth System Sciences, 20(1), 329-345. doi:10.5194/hess-20-329-2016 | es_ES |
dc.description.references | Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., … Zacharias, S. (2017). Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity. Hydrology and Earth System Sciences, 21(10), 5009-5030. doi:10.5194/hess-21-5009-2017 | es_ES |
dc.description.references | Schrön, M., Zacharias, S., Womack, G., Köhli, M., Desilets, D., Oswald, S. E., … Dietrich, P. (2018). Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment. Geoscientific Instrumentation, Methods and Data Systems, 7(1), 83-99. doi:10.5194/gi-7-83-2018 | es_ES |