- -

Can Drip Irrigation be Scheduled with Cosmic-Ray Neutron Sensing?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Can Drip Irrigation be Scheduled with Cosmic-Ray Neutron Sensing?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Li, Dazhi es_ES
dc.contributor.author Schroen, Martin es_ES
dc.contributor.author Kohli, Markus es_ES
dc.contributor.author Bogena, Heye es_ES
dc.contributor.author Weimar, Jannis es_ES
dc.contributor.author Jiménez Bello, Miguel Angel es_ES
dc.contributor.author Han, Xujun es_ES
dc.contributor.author Martínez-Gimeno, María Amparo es_ES
dc.contributor.author Zacharias, Steffen es_ES
dc.contributor.author Vereecken, Harry es_ES
dc.contributor.author Franssen, Harrie-Jan Hendricks es_ES
dc.date.accessioned 2021-01-09T04:32:26Z
dc.date.available 2021-01-09T04:32:26Z
dc.date.issued 2019-10-03 es_ES
dc.identifier.issn 1539-1663 es_ES
dc.identifier.uri http://hdl.handle.net/10251/158513
dc.description.abstract [EN] Irrigation is essential for maintaining food production in water-scarce regions. The irrigation need depends on the water content of the soil, which we measured with the novel technique of cosmic-ray neutron sensing (CRNS). The potential of the CRNS technique for drip irrigation scheduling was explored in this study for the Picassent site near Valencia, Spain. To support the experimental evidence, the neutron transport simulation URANOS was used to simulate the effect of drip irrigation on the neutron counts. The overall soil water content (SWC) in the CRNS footprint was characterized with a root mean square error <0.03 cm3/cm3, but the experimental dataset indicated methodological limitations to detect drip water input. Both experimental data and simulation results suggest that the large¿area neutron response to drip irrigation is insignificant in our specific case using a standard CRNS probe. Because of the small area of irrigated patches and short irrigation time, the limited SWC changes due to drip irrigation were not visible from the measured neutron intensity changes. Our study shows that CRNS modeling can be used to assess the suitability of the CRNS technique for certain applications. While the standard CRNS probe was not able to detect small¿scale drip irrigation patterns, the method might be applicable for larger irrigated areas, in drier regions, and for longer and more intense irrigation periods. Since statistical noise is the main limitation of the CRNS measurement, the capability of the instrument could be improved in future studies by larger and more efficient neutron detectors. es_ES
dc.description.sponsorship Dazhi Li was funded by a stipend from the government of China (CSC scholarship). The research was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Project 414050972, Research Unit FOR 2694 "Cosmic Sense." We are also thankful to our colleagues at the Instituto Valenciano de Investigaciones Agrarias and Universitat Politecnica de Valencia for the installation of the soil moisture sensors and for conducting field measurements es_ES
dc.language Inglés es_ES
dc.publisher Soil Science Society of America es_ES
dc.relation.ispartof Vadose Zone Journal es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification MECANICA DE FLUIDOS es_ES
dc.title Can Drip Irrigation be Scheduled with Cosmic-Ray Neutron Sensing? es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2136/vzj2019.05.0053 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFG//414050972/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFG//FOR 2694/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Li, D.; Schroen, M.; Kohli, M.; Bogena, H.; Weimar, J.; Jiménez Bello, MA.; Han, X.... (2019). Can Drip Irrigation be Scheduled with Cosmic-Ray Neutron Sensing?. Vadose Zone Journal. 18(1):1-13. https://doi.org/10.2136/vzj2019.05.0053 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.2136/vzj2019.05.0053 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\394901 es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.description.references Andreasen, M., Jensen, K. H., Desilets, D., Franz, T. E., Zreda, M., Bogena, H. R., & Looms, M. C. (2017). Status and Perspectives on the Cosmic-Ray Neutron Method for Soil Moisture Estimation and Other Environmental Science Applications. Vadose Zone Journal, 16(8), vzj2017.04.0086. doi:10.2136/vzj2017.04.0086 es_ES
dc.description.references Baatz, R., Bogena, H. R., Hendricks Franssen, H. ‐J., Huisman, J. A., Montzka, C., & Vereecken, H. (2015). An empirical vegetation correction for soil water content quantification using cosmic ray probes. Water Resources Research, 51(4), 2030-2046. doi:10.1002/2014wr016443 es_ES
dc.description.references Baatz, R., Bogena, H. R., Hendricks Franssen, H.-J., Huisman, J. A., Qu, W., Montzka, C., & Vereecken, H. (2014). Calibration of a catchment scale cosmic-ray probe network: A comparison of three parameterization methods. Journal of Hydrology, 516, 231-244. doi:10.1016/j.jhydrol.2014.02.026 es_ES
dc.description.references Barker, J. B., Franz, T. E., Heeren, D. M., Neale, C. M. U., & Luck, J. D. (2017). Soil water content monitoring for irrigation management: A geostatistical analysis. Agricultural Water Management, 188, 36-49. doi:10.1016/j.agwat.2017.03.024 es_ES
dc.description.references Bogena, H. R., Huisman, J. A., Baatz, R., Hendricks Franssen, H.-J., & Vereecken, H. (2013). Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario. Water Resources Research, 49(9), 5778-5791. doi:10.1002/wrcr.20463 es_ES
dc.description.references Desilets, D., Zreda, M., & Ferré, T. P. A. (2010). Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water Resources Research, 46(11). doi:10.1029/2009wr008726 es_ES
dc.description.references 1991 North Carolina Coop. Ext. Serv. Raleigh R.O. Evans R.E. Sneed D.K. Cassel Irrigation scheduling to improve water‐ and energy‐use efficiencies es_ES
dc.description.references Fares, A., & Alva, A. K. (2000). Evaluation of capacitance probes for optimal irrigation of citrus through soil moisture monitoring in an entisol profile. Irrigation Science, 19(2), 57-64. doi:10.1007/s002710050001 es_ES
dc.description.references Fersch, B., Jagdhuber, T., Schrön, M., Völksch, I., & Jäger, M. (2018). Synergies for Soil Moisture Retrieval Across Scales From Airborne Polarimetric SAR, Cosmic Ray Neutron Roving, and an In Situ Sensor Network. Water Resources Research, 54(11), 9364-9383. doi:10.1029/2018wr023337 es_ES
dc.description.references Franz, T. E., Zreda, M., Rosolem, R., & Ferre, T. P. A. (2013). A universal calibration function for determination of soil moisture with cosmic-ray neutrons. Hydrology and Earth System Sciences, 17(2), 453-460. doi:10.5194/hess-17-453-2013 es_ES
dc.description.references Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003 es_ES
dc.description.references Han, X., Hendricks Franssen, H.-J., Jiménez Bello, M. Á., Rosolem, R., Bogena, H., Alzamora, F. M., … Vereecken, H. (2016). Simultaneous soil moisture and properties estimation for a drip irrigated field by assimilating cosmic-ray neutron intensity. Journal of Hydrology, 539, 611-624. doi:10.1016/j.jhydrol.2016.05.050 es_ES
dc.description.references Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., & Zacharias, S. (2015). Footprint characteristics revised for field‐scale soil moisture monitoring with cosmic‐ray neutrons. Water Resources Research, 51(7), 5772-5790. doi:10.1002/2015wr017169 es_ES
dc.description.references 2013 Washington State Univ. Ext. Pullman R.T. Peters K. Desta L. Nelson Practical use of soil moisture sensors and their data for irrigation scheduling es_ES
dc.description.references Rosolem, R., Shuttleworth, W. J., Zreda, M., Franz, T. E., Zeng, X., & Kurc, S. A. (2013). The Effect of Atmospheric Water Vapor on Neutron Count in the Cosmic-Ray Soil Moisture Observing System. Journal of Hydrometeorology, 14(5), 1659-1671. doi:10.1175/jhm-d-12-0120.1 es_ES
dc.description.references Schreiner-McGraw, A. P., Vivoni, E. R., Mascaro, G., & Franz, T. E. (2016). Closing the water balance with cosmic-ray soil moisture measurements and assessing their relation to evapotranspiration in two semiarid watersheds. Hydrology and Earth System Sciences, 20(1), 329-345. doi:10.5194/hess-20-329-2016 es_ES
dc.description.references Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., … Zacharias, S. (2017). Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity. Hydrology and Earth System Sciences, 21(10), 5009-5030. doi:10.5194/hess-21-5009-2017 es_ES
dc.description.references Schrön, M., Zacharias, S., Womack, G., Köhli, M., Desilets, D., Oswald, S. E., … Dietrich, P. (2018). Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment. Geoscientific Instrumentation, Methods and Data Systems, 7(1), 83-99. doi:10.5194/gi-7-83-2018 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem