- -

Online Hate Speech against Women: Automatic Identification of Misogyny and Sexism on Twitter

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Online Hate Speech against Women: Automatic Identification of Misogyny and Sexism on Twitter

Mostrar el registro completo del ítem

Frenda, S.; Ghanem, B.; Montes-Y-Gómez, M.; Rosso, P. (2019). Online Hate Speech against Women: Automatic Identification of Misogyny and Sexism on Twitter. Journal of Intelligent & Fuzzy Systems. 36(5):4743-4752. https://doi.org/10.3233/JIFS-179023

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/158846

Ficheros en el ítem

Metadatos del ítem

Título: Online Hate Speech against Women: Automatic Identification of Misogyny and Sexism on Twitter
Autor: Frenda, Simona Ghanem, Bilal Montes-y-Gómez, Manuel Rosso, Paolo
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Patriarchal behavior, such as other social habits, has been transferred online, appearing as misogynistic and sexist comments, posts or tweets. This online hate speech against women has serious consequences in real ...[+]
Palabras clave: Misogyny detection , Sexism detection , Linguistic analysis
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Intelligent & Fuzzy Systems. (issn: 1064-1246 )
DOI: 10.3233/JIFS-179023
Editorial:
IOS Press
Versión del editor: https://doi.org/10.3233/JIFS-179023
Código del Proyecto:
info:eu-repo/grantAgreement/CONACyT//FC 2016-2410/
info:eu-repo/grantAgreement/MINECO//TIN2015-71147-C2-1-P/ES/COMPRENSION DEL LENGUAJE EN LOS MEDIOS DE COMUNICACION SOCIAL - REPRESENTANDO CONTEXTOS DE FORMA CONTINUA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/
Agradecimientos:
The work of Simona Frenda and Paolo Rosso was partially funded by the Spanish MINECO under the research project SomEMBED (TIN2015-71147-C2-1-P). We also thank the support of CONACYT-Mexico (project FC-2410).
Tipo: Artículo

References

Anzovino M. , Fersini E. and Rosso P. , Automatic Identification and Classification of Misogynistic Language on Twitter, Proc 23rd International Conference on Applications of Natural Language to Information Systems, NLDB-2018, Springer-Verlag, LNCS 10859, 2018, pp. 57–64.

Burnap P. and Williams M.L. , Hate speech, machine classification and statistical modelling of information flows on Twitter: Interpretation and communication for policy decision making, Internet, Policy and Politics, Oxford, UK, 2014.

Burnap, P., Rana, O. F., Avis, N., Williams, M., Housley, W., Edwards, A., … Sloan, L. (2015). Detecting tension in online communities with computational Twitter analysis. Technological Forecasting and Social Change, 95, 96-108. doi:10.1016/j.techfore.2013.04.013 [+]
Anzovino M. , Fersini E. and Rosso P. , Automatic Identification and Classification of Misogynistic Language on Twitter, Proc 23rd International Conference on Applications of Natural Language to Information Systems, NLDB-2018, Springer-Verlag, LNCS 10859, 2018, pp. 57–64.

Burnap P. and Williams M.L. , Hate speech, machine classification and statistical modelling of information flows on Twitter: Interpretation and communication for policy decision making, Internet, Policy and Politics, Oxford, UK, 2014.

Burnap, P., Rana, O. F., Avis, N., Williams, M., Housley, W., Edwards, A., … Sloan, L. (2015). Detecting tension in online communities with computational Twitter analysis. Technological Forecasting and Social Change, 95, 96-108. doi:10.1016/j.techfore.2013.04.013

Chen Y. , Zhou Y. , Zhu S. and Xu H. , Detecting offensive language in social media to protect adolescent online safety, Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International Conference on Social Computing (SocialCom), Amsterdam, Netherlands, IEEE, 2012, pp. 71–80.

Escalante, H. J., Villatoro-Tello, E., Garza, S. E., López-Monroy, A. P., Montes-y-Gómez, M., & Villaseñor-Pineda, L. (2017). Early detection of deception and aggressiveness using profile-based representations. Expert Systems with Applications, 89, 99-111. doi:10.1016/j.eswa.2017.07.040

Fersini E. , Anzovino M. and Rosso P. , Overview of the Task on Automatic Misogyny Identification at IBEREVAL, CEUR Workshop Proceedings 2150, Seville, Spain, 2018.

Fersini E. , Nozza D. and Rosso P. , Overview of the Evalita 2018 Task on Automatic Misogyny Identification (AMI), Proceedings of the 6th evaluation campaign of Natural Language Processing and Speech tools for Italian (EVALITA’18), Turin, Italy, 2018.

Fox, J., & Tang, W. Y. (2014). Sexism in online video games: The role of conformity to masculine norms and social dominance orientation. Computers in Human Behavior, 33, 314-320. doi:10.1016/j.chb.2013.07.014

Fulper R. , Ciampaglia G.L. , Ferrara E. , Ahn Y. , Flammini A. , Menczer F. , Lewis B. and Rowe K. , Misogynistic language on Twitter and sexual violence, Proceedings of the ACM Web Science Workshop on Computational Approaches to Social Modeling (ChASM), 2014.

Gambäck B. and Sikdar U.K. , Using convolutional neural networks to classify hate-speech, Proceedings of the First Workshop on Abusive Language Online 2017.

Hewitt, S., Tiropanis, T., & Bokhove, C. (2016). The problem of identifying misogynist language on Twitter (and other online social spaces). Proceedings of the 8th ACM Conference on Web Science. doi:10.1145/2908131.2908183

Justo R. , Corcoran T. , Lukin S.M. , Walker M. and Torres M.I. , Extracting relevant knowledge for the detection of sarcasm and nastiness in the social web, Knowledge-Based Systems, 2014.

Lapidot-Lefler, N., & Barak, A. (2012). Effects of anonymity, invisibility, and lack of eye-contact on toxic online disinhibition. Computers in Human Behavior, 28(2), 434-443. doi:10.1016/j.chb.2011.10.014

Nobata C. , Tetreault J. , Thomas A. , Mehdad Y. and Chang Y. , Abusive language detection in online user content, Proceedings of the 25th International Conference on World Wide Web, Geneva, Switzerland, 2016, pp. 145–153.

Poland, B. (2016). Haters. doi:10.2307/j.ctt1fq9wdp

Samghabadi N.S. , Maharjan S. , Sprague A. , Diaz-Sprague R. and Solorio T. , Detecting nastiness in social media, Proceedings of the First Workshop on Abusive Language Online, Vancouver, Canada, 2017, pp. 63–72. Association for Computational Linguistics.

Sood, S., Antin, J., & Churchill, E. (2012). Profanity use in online communities. Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems - CHI ’12. doi:10.1145/2207676.2208610

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem