Mostrar el registro sencillo del ítem
dc.contributor.author | Ortega-Bueno, Reynier | es_ES |
dc.contributor.author | Medina-Pagola, José E. | es_ES |
dc.contributor.author | Muñiz-Cuza, Carlos Enrique | es_ES |
dc.contributor.author | Rosso, Paolo | es_ES |
dc.date.accessioned | 2021-01-15T04:31:43Z | |
dc.date.available | 2021-01-15T04:31:43Z | |
dc.date.issued | 2019 | es_ES |
dc.identifier.issn | 0302-9743 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159146 | |
dc.description.abstract | [EN] Recognizing and classifying evaluative expressions is an important issue of sentiment analysis. This paper presents a corpus-based method for classifying attitude types (Affect, Judgment and Appreciation) and attitude orientation (positive and negative) of words in Spanish relying on the Attitude system of the Appraisal Theory. The main contribution lies in exploring large and unlabeled corpora using neural network word embedding techniques in order to obtain semantic information among words of the same attitude and orientation class. Experimental results show that the proposed method achieves a good effectiveness and outperforms the state of the art for automatic classification of attitude words in Spanish language. | es_ES |
dc.description.sponsorship | The work of the fourth author was partially supported by the SomEMBED TIN2015-71147-C2-1-P research project (MINECO/FEDER). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Lecture Notes in Computer Science | es_ES |
dc.relation.ispartof | Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Appraisal framework | es_ES |
dc.subject | Attitude classification | es_ES |
dc.subject | Opinion mining | es_ES |
dc.subject | Neural network word embedding | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Improving Attitude Words Classification for Opinion Mining using Word Embedding | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-3-030-13469-3_112 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2015-71147-C2-1-P/ES/COMPRENSION DEL LENGUAJE EN LOS MEDIOS DE COMUNICACION SOCIAL - REPRESENTANDO CONTEXTOS DE FORMA CONTINUA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Ortega-Bueno, R.; Medina-Pagola, JE.; Muñiz-Cuza, CE.; Rosso, P. (2019). Improving Attitude Words Classification for Opinion Mining using Word Embedding. Lecture Notes in Computer Science. 11401:971-982. https://doi.org/10.1007/978-3-030-13469-3_112 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 23rd Iberoamerican Congress on Pattern Recognition (CIARP 2018) | es_ES |
dc.relation.conferencedate | Noviembre 19-22,2018 | es_ES |
dc.relation.conferenceplace | Madrid, Spain | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-030-13469-3_112 | es_ES |
dc.description.upvformatpinicio | 971 | es_ES |
dc.description.upvformatpfin | 982 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11401 | es_ES |
dc.relation.pasarela | S\409384 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Bloom, K., Argamon, S.: Automated learning of appraisal extraction patterns. In: Gries, S.T., Wulff, S., Davies, M. (eds.) Corpus Linguistic Applications: Current Studies, New Directions, Third edn., pp. 249–260. Rodopi B.V., Amsterdam, New York (2010) | es_ES |
dc.description.references | Bloom, K., Garg, N., Argamon, S.: Extracting appraisal expressions. In: Proceedings of the Annual Conference of the NAACL-HLT, pp. 308–315. ACL (2007) | es_ES |
dc.description.references | Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. ACL 5, 135–146 (2017) | es_ES |
dc.description.references | Cardellino, C.: Spanish billion words corpus and embeddings (2016) | es_ES |
dc.description.references | Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002) | es_ES |
dc.description.references | Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990) | es_ES |
dc.description.references | Hernández, L., López-Lopez, A., Medina-Pagola, J.E.: Recognizing polarity and attitude of words in text. In: Proceedings of 14th Portuguese Conference on Artificial Intelligence, (EPIA 2009), pp. 525–536. Aveiro, Portugal (2009) | es_ES |
dc.description.references | Hernández, L., López-Lopez, A., Medina-Pagola, J.E.: Classification of attitude words for opinions mining. Int. J. Comput. Linguist. Appl. 2(1–2), 267–283 (2011) | es_ES |
dc.description.references | Kanerva, P., Kristofersson, J., Holst, A.: Random indexing of text samples for latent semantic analysis. In: Proceedings of the 22 Annual Conference of the Cognitive Science Society, vol. 1036, no. 2, pp. 16429–16429 (2000) | es_ES |
dc.description.references | Martin, J.R., White, P.R.R.: The Language of Evaluation: The Appraisal Framework, 1st edn. Palgrave Macmillan, New York (2005) | es_ES |
dc.description.references | Mikolov, T., Corrado, G., Chen, K., Dean, J.: Efficient estimation of word representations in vector space. In: International Conference on Learning Representations (ICLR 2013), pp. 1–12 (2013) | es_ES |
dc.description.references | Neviarouskaya, A., Aono, M., Prendinger, H., Ishizuka, M.: Intelligent interface for textual attitude analysis. J. ACM Trans. Intell. Syst. Technol. 5(3), 1–20 (2014) | es_ES |
dc.description.references | Neviarouskaya, A., Prendinger, H., Ishizuka, M.: Attitude sensing in text based on a compositional linguistic approach. Comput. Intell. 31, 1–45 (2013) | es_ES |
dc.description.references | Padró, L., Stanilovsky, E.: FreeLing 3.0: towards wider multilinguality. In: Proceedings of the (LREC 2012) (2012) | es_ES |
dc.description.references | Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975) | es_ES |
dc.description.references | Taboada, M., Grieve, J.: Analyzing appraisal automatically. In: Proceedings of AAAI Spring Symposium on Exploring Attitude and Affect in Text, pp. 158–161. American Association for Artificial Intelligence (2004) | es_ES |