- -

Improvements in aggregate-paste interface by the hydration of steelmaking waste in concretes and mortars

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improvements in aggregate-paste interface by the hydration of steelmaking waste in concretes and mortars

Mostrar el registro completo del ítem

Miñano, I.; Benito, FJ.; Valcuende Payá, MO.; Rodríguez, C.; Parra, CJ. (2019). Improvements in aggregate-paste interface by the hydration of steelmaking waste in concretes and mortars. Materials. 12(7):1-14. https://doi.org/10.3390/ma12071147

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159212

Ficheros en el ítem

Metadatos del ítem

Título: Improvements in aggregate-paste interface by the hydration of steelmaking waste in concretes and mortars
Autor: Miñano, Isabel Benito, Francisco J. Valcuende Payá, Manuel Octavio Rodríguez, Carlos Parra, Carlos J.
Entidad UPV: Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques
Fecha difusión:
Resumen:
[EN] The objective of the experimental work is to study the mechanical properties in self-compacting concretes (SCC) in which part of the limestone aggregate has been replaced by granulated blast furnace slag (GBFS) in ...[+]
Palabras clave: Self-compacting concrete , Granulated slag , Microstructure , Mechanical properties
Derechos de uso: Reconocimiento (by)
Fuente:
Materials. (eissn: 1996-1944 )
DOI: 10.3390/ma12071147
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ma12071147
Agradecimientos:
The authors of this work express their gratitude to laboratory technicians R. Calabuig and J. Martínez for their collaboration in carrying out the trials. We would also like to point out that the GBFS used was kindly ...[+]
Tipo: Artículo

References

Rodríguez-Galán, M., Alonso-Fariñas, B., Baena-Moreno, F., Leiva, C., Navarrete, B., & Vilches, L. (2019). Synthetic Slag Production Method Based on a Solid Waste Mix Vitrification for the Manufacturing of Slag-Cement. Materials, 12(2), 208. doi:10.3390/ma12020208

Rodríguez, C., Sánchez, I., Miñano, I., Benito, F., Cabeza, M., & Parra, C. (2019). On the Possibility of Using Recycled Mixed Aggregates and GICC Thermal Plant Wastes in Non-Structural Concrete Elements. Sustainability, 11(3), 633. doi:10.3390/su11030633

Yüksel, İ., Bilir, T., & Özkan, Ö. (2007). Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate. Building and Environment, 42(7), 2651-2659. doi:10.1016/j.buildenv.2006.07.003 [+]
Rodríguez-Galán, M., Alonso-Fariñas, B., Baena-Moreno, F., Leiva, C., Navarrete, B., & Vilches, L. (2019). Synthetic Slag Production Method Based on a Solid Waste Mix Vitrification for the Manufacturing of Slag-Cement. Materials, 12(2), 208. doi:10.3390/ma12020208

Rodríguez, C., Sánchez, I., Miñano, I., Benito, F., Cabeza, M., & Parra, C. (2019). On the Possibility of Using Recycled Mixed Aggregates and GICC Thermal Plant Wastes in Non-Structural Concrete Elements. Sustainability, 11(3), 633. doi:10.3390/su11030633

Yüksel, İ., Bilir, T., & Özkan, Ö. (2007). Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate. Building and Environment, 42(7), 2651-2659. doi:10.1016/j.buildenv.2006.07.003

Bilir, T. (2012). Effects of non-ground slag and bottom ash as fine aggregate on concrete permeability properties. Construction and Building Materials, 26(1), 730-734. doi:10.1016/j.conbuildmat.2011.06.080

Parra, C., Valcuende, M., & Gómez, F. (2011). Splitting tensile strength and modulus of elasticity of self-compacting concrete. Construction and Building Materials, 25(1), 201-207. doi:10.1016/j.conbuildmat.2010.06.037

Demirboğa, R., & Gül, R. (2006). Production of high strength concrete by use of industrial by-products. Building and Environment, 41(8), 1124-1127. doi:10.1016/j.buildenv.2005.04.023

Krishnasami, R., & Malathy, R. (2013). Significance of Blast Furnace Slag as Coarse Aggregate in Self-Compacting Concrete. Applied Mechanics and Materials, 357-360, 829-833. doi:10.4028/www.scientific.net/amm.357-360.829

Valcuende, M., Benito, F., Parra, C., & Miñano, I. (2015). Shrinkage of self-compacting concrete made with blast furnace slag as fine aggregate. Construction and Building Materials, 76, 1-9. doi:10.1016/j.conbuildmat.2014.11.029

Puertas, F. (1993). Escorias de alto horno: composición y comportamiento hidráulico. Materiales de Construcción, 43(229), 37-48. doi:10.3989/mc.1993.v43.i229.687

Matschei, T., Lothenbach, B., & Glasser, F. P. (2007). The role of calcium carbonate in cement hydration. Cement and Concrete Research, 37(4), 551-558. doi:10.1016/j.cemconres.2006.10.013

Lothenbach, B., Le Saout, G., Gallucci, E., & Scrivener, K. (2008). Influence of limestone on the hydration of Portland cements. Cement and Concrete Research, 38(6), 848-860. doi:10.1016/j.cemconres.2008.01.002

Bosiljkov, V. B. (2003). SCC mixes with poorly graded aggregate and high volume of limestone filler. Cement and Concrete Research, 33(9), 1279-1286. doi:10.1016/s0008-8846(03)00013-9

Ye, G., Liu, X., De Schutter, G., Poppe, A.-M., & Taerwe, L. (2007). Influence of limestone powder used as filler in SCC on hydration and microstructure of cement pastes. Cement and Concrete Composites, 29(2), 94-102. doi:10.1016/j.cemconcomp.2006.09.003

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem