Mostrar el registro sencillo del ítem
dc.contributor.author | Bartoll Arnau, Salud | es_ES |
dc.contributor.author | Martínez Jiménez, Félix | es_ES |
dc.contributor.author | Peris Manguillot, Alfredo | es_ES |
dc.contributor.author | Ródenas Escribá, Francisco De Asís | es_ES |
dc.date.accessioned | 2021-01-19T04:31:51Z | |
dc.date.available | 2021-01-19T04:31:51Z | |
dc.date.issued | 2019-06 | es_ES |
dc.identifier.issn | 1660-5446 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159337 | |
dc.description.abstract | [EN] We study one of the strongest versions of chaos for continuous dynamical systems, namely the specification property. We extend the definition of specification property for operators on a Banach space to strongly continuous one-parameter semigroups of operators, that is, C0-semigroups. In addition, we study the relationships of the specification property for C0-semigroups (SgSP) with other dynamical properties: mixing, Devaney's chaos, distributional chaos, and frequent hypercyclicity. Concerning the applications, we provide several examples of semigroups which exhibit the SgSP with particular interest on solution semigroups to certain linear PDEs, which range from the hyperbolic heat equation to the Black-Scholes equation. | es_ES |
dc.description.sponsorship | The authors were supported by MINECO, Projects MTM2013-47093-P and MTM2016-75963-P. The second and third authors were also supported by Generalitat Valenciana, Projects PROMETEOII/2013/013 and PROMETEO/2017/102. We are indebted to the referee whose valuable comments produced an improvement in the presentation of the paper. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Mediterranean Journal of Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Hypercyclic semigroups of operators | es_ES |
dc.subject | Specification property | es_ES |
dc.subject | Frequently hypercyclic semigroups of operators | es_ES |
dc.subject | Chaotic semigroups of operators | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | The Specification Property for C0-Semigroups | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00009-019-1353-7 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F013/ES/Análisis funcional, teoría de operadores y sus aplicaciones (AFUNTOP)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-47093-P/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bartoll Arnau, S.; Martínez Jiménez, F.; Peris Manguillot, A.; Ródenas Escribá, FDA. (2019). The Specification Property for C0-Semigroups. Mediterranean Journal of Mathematics. 16(3):1-12. https://doi.org/10.1007/s00009-019-1353-7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00009-019-1353-7 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\393696 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Albanese, A.A., Barrachina, X., Mangino, E.M., Peris, A.: Distributional chaos for strongly continuous semigroups of operators. Commun. Pure Appl. Anal. 12, 2069–2082 (2013) | es_ES |
dc.description.references | Aroza, J., Kalmes, T., Mangino, E.: Chaotic $$C_0$$-semigroups induced by semiflows in Lebesgue and Sobolev spaces. J. Math. Anal. Appl. 412, 77–98 (2014) | es_ES |
dc.description.references | Badea, C., Grivaux, S.: Unimodular eigenvalues, uniformly distributed sequences and linear dynamics. Adv. Math. 211, 766–793 (2007) | es_ES |
dc.description.references | Banasiak, J., Moszyński, M.: Dynamics of birth-and-death processes with proliferation-stability and chaos. Discrete Contin. Dyn. Syst. 29, 67–79 (2011) | es_ES |
dc.description.references | Bartoll, S., Martínez-Giménez, F., Peris, A.: The specification property for backward shifts. J. Differ. Equ. Appl. 18, 599–605 (2012) | es_ES |
dc.description.references | Bartoll, S., Martínez-Giménez, F., Peris, A.: Operators with the specification property. J. Math. Anal. Appl. 436, 478–488 (2016) | es_ES |
dc.description.references | Bayart, F., Bermúdez, T.: Semigroups of chaotic operators. Bull. Lond. Math. Soc. 41, 823–830 (2009) | es_ES |
dc.description.references | Bayart, F., Grivaux, S.: Frequently hypercyclic operators. Trans. Am. Math. Soc. 358, 5083–5117 (2006) | es_ES |
dc.description.references | Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009) | es_ES |
dc.description.references | Bayart, F., Ruzsa, I.Z.: Difference sets and frequently hypercyclic weighted shifts. Ergod. Theory Dyn. Syst. 35, 691–709 (2015) | es_ES |
dc.description.references | Bermúdez, T., Bonilla, A., Conejero, J.A., Peris, A.: Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces. Stud. Math. 170, 57–75 (2005) | es_ES |
dc.description.references | Bernardes Jr., N.C., Bonilla, A., Müller, V., Peris, A.: Distributional chaos for linear operators. J. Funct. Anal. 265, 2143–2163 (2013) | es_ES |
dc.description.references | Bernardes Jr., N.C., Bonilla, A., Müller, V., Peris, A.: Li–Yorke chaos in linear dynamics. Ergod. Theory Dyn. Syst. 35, 1723–1745 (2015) | es_ES |
dc.description.references | Bernardes Jr., N.C., Bonilla, A., Peris, A., Wu, X.: Distributional chaos for operators on Banach spaces. J. Math. Anal. Appl. 459, 797–821 (2018) | es_ES |
dc.description.references | Bonilla, A., Grosse-Erdmann, K.-G.: Frequently hypercyclic operators and vectors. Ergod. Theory Dyn. Syst. 27, 383–404 (2007) | es_ES |
dc.description.references | Bowen, R.: Topological entropy and axiom $${\rm A}$$. In: Global Analysis (Proc. Sympos. Pure Math., vol. XIV, Berkeley, Calif., 1968), pp. 23–41. Amer. Math. Soc., Providence (1970) | es_ES |
dc.description.references | Bowen, R.: Periodic orbits for hyperbolic flows. Am. J. Math. 94, 1–30 (1972) | es_ES |
dc.description.references | Chakir, M., EL Mourchid, S.: Strong mixing Gaussian measures for chaotic semigroups. J. Math. Anal. Appl. 459, 778–788 (2018) | es_ES |
dc.description.references | Conejero, J.A., Lizama, C., Murillo-Arcila, M., Peris, A.: Linear dynamics of semigroups generated by differential operators. Open Math. 15, 745–767 (2017) | es_ES |
dc.description.references | Conejero, J.A., Müller, V., Peris, A.: Hypercyclic behaviour of operators in a hypercyclic $$C_0$$-semigroup. J. Funct. Anal. 244, 342–348 (2007) | es_ES |
dc.description.references | Conejero, J.A., Peris, A.: Hypercyclic translation $$C_0$$-semigroups on complex sectors. Discrete Contin. Dyn. Syst. 25, 1195–1208 (2009) | es_ES |
dc.description.references | Conejero, J.A., Peris, A., Trujillo, M.: Chaotic asymptotic behaviour of the hyperbolic heat transfer equation solutions. Int. J. Bifur. Chaos Appl. Sci. Eng. 20, 2943–2947 (2010) | es_ES |
dc.description.references | Costakis, G., Peris, A.: Hypercyclic semigroups and somewhere dense orbits. C. R. Math. Acad. Sci. Paris 335, 895–898 (2002) | es_ES |
dc.description.references | Desch, W., Schappacher, W., Webb, G.F.: Hypercyclic and chaotic semigroups of linear operators. Ergod. Theory Dyn. Syst. 17, 793–819 (1997) | es_ES |
dc.description.references | Emamirad, H., Goldstein, G., Goldstein, J.A.: Chaotic solution for the Black–Scholes equation. Proc. Am. Math. Soc. 140, 2043–2052 (2012) | es_ES |
dc.description.references | Goldstein, J.A., Mininni, R.M., Romanelli, S.: A new explicit formula for the solution of the Black–Merton–Scholes equation. In: Infinite Dimensional Stochastic Analysis, World Series Publ., pp. 226–235 (2008) | es_ES |
dc.description.references | Grosse-Erdmann, K.G., Peris, A.: Linear Chaos. Universitext, Springer-Verlag London Ltd., London (2011) | es_ES |
dc.description.references | Herzog, G.: On a universality of the heat equation. Math. Nachr. 188, 169–171 (1997) | es_ES |
dc.description.references | Mangino, E.M., Peris, A.: Frequently hypercyclic semigroups. Stud. Math. 202, 227–242 (2011) | es_ES |
dc.description.references | Mangino, E.M., Murillo-Arcila, M.: Frequently hypercyclic translation semigroups. Stud. Math. 227, 219–238 (2015) | es_ES |
dc.description.references | Murillo-Arcila, M., Peris, A.: Strong mixing measures for $$C_0$$-semigroups. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 109, 101–115 (2015) | es_ES |
dc.description.references | Oprocha, P.: Specification properties and dense distributional chaos. Discrete Contin. Dyn. Syst. 17, 821–833 (2007) | es_ES |
dc.description.references | Rudnicki, R.: Chaoticity and invariant measures for a cell population model. J. Math. Anal. Appl. 339, 151–165 (2012) | es_ES |
dc.description.references | Yin, Z., Wei, Y.: Recurrence and topological entropy of translation operators. J. Math. Anal. Appl. 460, 203–215 (2018) | es_ES |