- -

Stochastic inverse finite element modeling for characterization of heterogeneous material properties

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Stochastic inverse finite element modeling for characterization of heterogeneous material properties

Show simple item record

Files in this item

dc.contributor.author Llopis-Albert, Carlos es_ES
dc.contributor.author Rubio Montoya, Francisco José es_ES
dc.contributor.author Valero Chuliá, Francisco José es_ES
dc.contributor.author Liao, Hunchang es_ES
dc.contributor.author Zeng, Shouzhen es_ES
dc.date.accessioned 2021-01-19T04:32:21Z
dc.date.available 2021-01-19T04:32:21Z
dc.date.issued 2019-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159352
dc.description.abstract [EN] The micro and meso-structural characteristics of materials present an inherent variability because of the intrinsic scatter in raw material and manufacturing processes. This problem is exacerbated in highly heterogeneous materials, which shows significant uncertainties in the macroscale material properties. Therefore, providing optimal designs and reliable structural analyses strongly depend on the selection of the underlying material property models. This paper is intended to provide insight into such a dependence by means of a stochastic inverse model based on an iterative optimization process depending only of one parameter, thus avoiding complex parametrizations. It relies on nonlinear combinations of material property realizations with a defined spatial structure for constraining stochastic simulations to data within the framework of a Finite Element approach. In this way, the procedure gradually deforms unconditional material property realizations to approximate the reproduction of information including mechanical parameters (such as Young's modulus and Poisson's ratio fields) and variables (e.g., stress and strain fields). It allows dealing with non-multiGaussian structures for the spatial structure of the material property realizations, thus allowing to reproduce the coalescence and connectivity among phases and existing crack patterns that often take place in composite materials, being these features crucial in order to obtain more reliable safety factors and fatigue life predictions. The methodology has been successfully applied for the characterization of a complex case study, where an uncertainty assessment has been carried out by means of multiple equally likely realizations. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Materials Research Express es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Heterogeneity es_ES
dc.subject Uncertainty es_ES
dc.subject Composite materials es_ES
dc.subject Finite element method es_ES
dc.subject Inverse modeling es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Stochastic inverse finite element modeling for characterization of heterogeneous material properties es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/2053-1591/ab4c72 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Llopis-Albert, C.; Rubio Montoya, FJ.; Valero Chuliá, FJ.; Liao, H.; Zeng, S. (2019). Stochastic inverse finite element modeling for characterization of heterogeneous material properties. Materials Research Express. 6(11):1-16. https://doi.org/10.1088/2053-1591/ab4c72 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/2053-1591/ab4c72 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2053-1591 es_ES
dc.relation.pasarela S\395395 es_ES
dc.description.references Albanesi, A., Bre, F., Fachinotti, V., & Gebhardt, C. (2018). Simultaneous ply-order, ply-number and ply-drop optimization of laminate wind turbine blades using the inverse finite element method. Composite Structures, 184, 894-903. doi:10.1016/j.compstruct.2017.10.051 es_ES
dc.description.references Albanesi, A., Fachinotti, V., Peralta, I., Storti, B., & Gebhardt, C. (2017). Application of the inverse finite element method to design wind turbine blades. Composite Structures, 161, 160-172. doi:10.1016/j.compstruct.2016.11.039 es_ES
dc.description.references Borkowski, L., & Kumar, R. S. (2018). Inverse method for estimation of composite kink-band toughness from open-hole compression strength data. Composite Structures, 186, 183-192. doi:10.1016/j.compstruct.2017.12.006 es_ES
dc.description.references Baby, A., Nayak, S. Y., Heckadka, S. S., Purohit, S., Bhagat, K. K., & Thomas, L. G. (2019). Mechanical and morphological characterization of carbonized egg-shell fillers/Borassus fibre reinforced polyester hybrid composites. Materials Research Express, 6(10), 105342. doi:10.1088/2053-1591/ab3bb7 es_ES
dc.description.references Borovinšek, M., Vesenjak, M., & Ren, Z. (2016). Estimating the base material properties of sintered metallic hollow spheres by inverse engineering procedure. Mechanics of Materials, 100, 22-30. doi:10.1016/j.mechmat.2016.06.001 es_ES
dc.description.references Capilla, J. E., & Llopis-Albert, C. (2009). Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 1. Theory. Journal of Hydrology, 371(1-4), 66-74. doi:10.1016/j.jhydrol.2009.03.015 es_ES
dc.description.references Charmpis, D. C., Schuëller, G. I., & Pellissetti, M. F. (2007). The need for linking micromechanics of materials with stochastic finite elements: A challenge for materials science. Computational Materials Science, 41(1), 27-37. doi:10.1016/j.commatsci.2007.02.014 es_ES
dc.description.references Cooreman, S., Lecompte, D., Sol, H., Vantomme, J., & Debruyne, D. (2007). Identification of Mechanical Material Behavior Through Inverse Modeling and DIC. Experimental Mechanics, 48(4), 421-433. doi:10.1007/s11340-007-9094-0 es_ES
dc.description.references Goodarzi, A., Fotouhi, M., & Shodja, H. M. (2016). Inverse scattering problem of reconstruction of an embedded micro-/nano-size scatterer within couple stress theory with micro inertia. Mechanics of Materials, 103, 123-134. doi:10.1016/j.mechmat.2016.09.011 es_ES
dc.description.references Herrera-Solaz, V., Segurado, J., & LLorca, J. (2015). On the robustness of an inverse optimization approach based on the Levenberg–Marquardt method for the mechanical behavior of polycrystals. European Journal of Mechanics - A/Solids, 53, 220-228. doi:10.1016/j.euromechsol.2015.05.005 es_ES
dc.description.references Hu, L. Y. (2000). Mathematical Geology, 32(1), 87-108. doi:10.1023/a:1007506918588 es_ES
dc.description.references Ignacio, I. (2014). Different Ways to Consider Heterogeneity in Quase-fragile Materials Using a Version of Lattice Model. Procedia Materials Science, 3, 499-504. doi:10.1016/j.mspro.2014.06.083 es_ES
dc.description.references Kashfi, M., Majzoobi, G. H., Bonora, N., Iannitti, G., Ruggiero, A., & Khademi, E. (2019). A new overall nonlinear damage model for fiber metal laminates based on continuum damage mechanics. Engineering Fracture Mechanics, 206, 21-33. doi:10.1016/j.engfracmech.2018.11.043 es_ES
dc.description.references Kashfi, M., Majzoobi, G. H., Bonora, N., Iannitti, G., Ruggiero, A., & Khademi, E. (2017). A study on fiber metal laminates by using a new damage model for composite layer. International Journal of Mechanical Sciences, 131-132, 75-80. doi:10.1016/j.ijmecsci.2017.06.045 es_ES
dc.description.references Kim, H., Kim, D., Ahn, K., Yoo, D., Son, H.-S., Kim, G.-S., & Chung, K. (2015). Inverse characterization method for mechanical properties of strain/strain-rate/temperature/temperature-history dependent steel sheets and its application for hot press forming. Metals and Materials International, 21(5), 874-890. doi:10.1007/s12540-015-5141-z es_ES
dc.description.references Kouznetsova, V., Brekelmans, W. A. M., & Baaijens, F. P. T. (2001). An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics, 27(1), 37-48. doi:10.1007/s004660000212 es_ES
dc.description.references Li, G., Xu, F., Sun, G., & Li, Q. (2014). Identification of mechanical properties of the weld line by combining 3D digital image correlation with inverse modeling procedure. The International Journal of Advanced Manufacturing Technology, 74(5-8), 893-905. doi:10.1007/s00170-014-6034-x es_ES
dc.description.references Libanori, R., Erb, R. M., Reiser, A., Le Ferrand, H., Süess, M. J., Spolenak, R., & Studart, A. R. (2012). Stretchable heterogeneous composites with extreme mechanical gradients. Nature Communications, 3(1). doi:10.1038/ncomms2281 es_ES
dc.description.references Lloyd, A. A., Wang, Z. X., & Donnelly, E. (2015). Multiscale Contribution of Bone Tissue Material Property Heterogeneity to Trabecular Bone Mechanical Behavior. Journal of Biomechanical Engineering, 137(1). doi:10.1115/1.4029046 es_ES
dc.description.references Mehrez, L., Moens, D., & Vandepitte, D. (2012). Stochastic identification of composite material properties from limited experimental databases, part I: Experimental database construction. Mechanical Systems and Signal Processing, 27, 471-483. doi:10.1016/j.ymssp.2011.09.004 es_ES
dc.description.references Mikdam, A., Makradi, A., Koutsawa, Y., & Belouettar, S. (2013). Microstructure effect on the mechanical properties of heterogeneous composite materials. Composites Part B: Engineering, 44(1), 714-721. doi:10.1016/j.compositesb.2012.01.081 es_ES
dc.description.references Mortazavi, F., Ghossein, E., Lévesque, M., & Villemure, I. (2014). High resolution measurement of internal full-field displacements and strains using global spectral digital volume correlation. Optics and Lasers in Engineering, 55, 44-52. doi:10.1016/j.optlaseng.2013.10.007 es_ES
dc.description.references Ni, Y., & Chiang, M. Y. M. (2007). Prediction of elastic properties of heterogeneous materials with complex microstructures. Journal of the Mechanics and Physics of Solids, 55(3), 517-532. doi:10.1016/j.jmps.2006.09.001 es_ES
dc.description.references Pitangueira, R. L., & Silva, R. R. e. (2002). Numerical Characterization of Concrete Heterogeneity. Materials Research, 5(3), 309-314. doi:10.1590/s1516-14392002000300015 es_ES
dc.description.references Oller, S., Miquel Canet, J., & Zalamea, F. (2005). Composite Material Behavior Using a Homogenization Double Scale Method. Journal of Engineering Mechanics, 131(1), 65-79. doi:10.1061/(asce)0733-9399(2005)131:1(65) es_ES
dc.description.references Pottier, T., Toussaint, F., & Vacher, P. (2011). Contribution of heterogeneous strain field measurements and boundary conditions modelling in inverse identification of material parameters. European Journal of Mechanics - A/Solids, 30(3), 373-382. doi:10.1016/j.euromechsol.2010.10.001 es_ES
dc.description.references Rahmani, B., Mortazavi, F., Villemure, I., & Levesque, M. (2013). A new approach to inverse identification of mechanical properties of composite materials: Regularized model updating. Composite Structures, 105, 116-125. doi:10.1016/j.compstruct.2013.04.025 es_ES
dc.description.references The Mechanics of Constitutive Modeling. (2005). doi:10.1016/b978-0-08-044606-6.x5000-0 es_ES
dc.description.references Sakata, S., Ashida, F., & Zako, M. (2008). Kriging-based approximate stochastic homogenization analysis for composite materials. Computer Methods in Applied Mechanics and Engineering, 197(21-24), 1953-1964. doi:10.1016/j.cma.2007.12.011 es_ES
dc.description.references Samavati, N., McGrath, D. M., Jewett, M. A. S., van der Kwast, T., Ménard, C., & Brock, K. K. (2014). Effect of material property heterogeneity on biomechanical modeling of prostate under deformation. Physics in Medicine and Biology, 60(1), 195-209. doi:10.1088/0031-9155/60/1/195 es_ES
dc.description.references Sanchez-Palencia, E., & Zaoui, A. (Eds.). (1987). Homogenization Techniques for Composite Media. Lecture Notes in Physics. doi:10.1007/3-540-17616-0 es_ES
dc.description.references Sharifi, H., & Larouche, D. (2014). Numerical Study of Variation of Mechanical Properties of a Binary Aluminum Alloy with Respect to Its Grain Shapes. Materials, 7(4), 3065-3083. doi:10.3390/ma7043065 es_ES
dc.description.references Sriramula, S., & Chryssanthopoulos, M. K. (2009). Quantification of uncertainty modelling in stochastic analysis of FRP composites. Composites Part A: Applied Science and Manufacturing, 40(11), 1673-1684. doi:10.1016/j.compositesa.2009.08.020 es_ES
dc.description.references Torquato, S. (2010). Optimal Design of Heterogeneous Materials. Annual Review of Materials Research, 40(1), 101-129. doi:10.1146/annurev-matsci-070909-104517 es_ES
dc.description.references Wu, X., & Zhu, Y. (2017). Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Materials Research Letters, 5(8), 527-532. doi:10.1080/21663831.2017.1343208 es_ES
dc.description.references Zhang, Z., Zhan, C., Shankar, K., Morozov, E. V., Singh, H. K., & Ray, T. (2017). Sensitivity analysis of inverse algorithms for damage detection in composites. Composite Structures, 176, 844-859. doi:10.1016/j.compstruct.2017.06.019 es_ES
dc.description.references Zottis, J., Soares Diehl, C. A. T., & Rocha, A. da S. (2018). Evaluation of experimentally observed asymmetric distributions of hardness, strain and residual stress in cold drawn bars by FEM-simulation. Journal of Materials Research and Technology, 7(4), 469-478. doi:10.1016/j.jmrt.2018.01.004 es_ES


This item appears in the following Collection(s)

Show simple item record