Mostrar el registro sencillo del ítem
dc.contributor.author | Trapero, Juan R. | es_ES |
dc.contributor.author | Cardós, Manuel | es_ES |
dc.contributor.author | Kourentzes, Nikolaos | es_ES |
dc.date.accessioned | 2021-01-19T04:32:30Z | |
dc.date.available | 2021-01-19T04:32:30Z | |
dc.date.issued | 2019-04 | es_ES |
dc.identifier.issn | 0305-0483 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159356 | |
dc.description.abstract | [EN] Supply chain risk management has drawn the attention of practitioners and academics alike. One source of risk is demand uncertainty. Demand forecasting and safety stock levels are employed to address this risk. Most previous work has focused on point demand forecasting, given that the forecast errors satisfy the typical normal i.i.d. assumption. However, the real demand for products is difficult to forecast accurately, which means that¿at minimum¿the i.i.d. assumption should be questioned. This work analyzes the effects of possible deviations from the i.i.d. assumption and proposes empirical methods based on kernel density estimation (non-parametric) and GARCH(1,1) models (parametric), among others, for computing the safety stock levels. The results suggest that for shorter lead times, the normality deviation is more important, and kernel density estimation is most suitable. By contrast, for longer lead times, GARCH models are more appropriate because the autocorrelation of the variance of the forecast errors is the most important deviation. In fact, even when no autocorrelation is present in the original demand, such autocorrelation can be present as a consequence of the overlapping process used to compute the lead time forecasts and the uncertainties arising in the estimation of the parameters of the forecasting model. Improvements are shown in terms of cycle service level, inventory investment and backorder volume. Simulations and real demand data from a manufacturer are used to illustrate our methodology. | es_ES |
dc.description.sponsorship | This work was supported by the European Regional Development Fund and the Spanish Government (MINECO/FEDER, UE) under project reference DPI2015-64133-R. The authors would also like to thank the anonymous referees for their useful comments and suggestions | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Omega | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Forecasting | es_ES |
dc.subject | Safety stock | es_ES |
dc.subject | Risk | es_ES |
dc.subject | Supply chain | es_ES |
dc.subject | Prediction intervals | es_ES |
dc.subject | Volatility | es_ES |
dc.subject | Kernel density estimation | es_ES |
dc.subject | GARCH | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Empirical safety stock estimation based on kernel and GARCH models | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.omega.2018.05.004 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2015-64133-R/ES/MITIGACION DEL EFECTO LATIGO MEDIANTE NOVEDOSAS TECNICAS DE PREDICCION Y CONTROL DE INVENTARIOS UTILIZANDO EL BIG DATA RESULTANTE DE LAS COLABORACIONES INTEREMPRESARIALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.description.bibliographicCitation | Trapero, JR.; Cardós, M.; Kourentzes, N. (2019). Empirical safety stock estimation based on kernel and GARCH models. Omega. 84:199-211. https://doi.org/10.1016/j.omega.2018.05.004 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.omega.2018.05.004 | es_ES |
dc.description.upvformatpinicio | 199 | es_ES |
dc.description.upvformatpfin | 211 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 84 | es_ES |
dc.relation.pasarela | S\365667 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |