- -

Empirical safety stock estimation based on kernel and GARCH models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Empirical safety stock estimation based on kernel and GARCH models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Trapero, Juan R. es_ES
dc.contributor.author Cardós, Manuel es_ES
dc.contributor.author Kourentzes, Nikolaos es_ES
dc.date.accessioned 2021-01-19T04:32:30Z
dc.date.available 2021-01-19T04:32:30Z
dc.date.issued 2019-04 es_ES
dc.identifier.issn 0305-0483 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159356
dc.description.abstract [EN] Supply chain risk management has drawn the attention of practitioners and academics alike. One source of risk is demand uncertainty. Demand forecasting and safety stock levels are employed to address this risk. Most previous work has focused on point demand forecasting, given that the forecast errors satisfy the typical normal i.i.d. assumption. However, the real demand for products is difficult to forecast accurately, which means that¿at minimum¿the i.i.d. assumption should be questioned. This work analyzes the effects of possible deviations from the i.i.d. assumption and proposes empirical methods based on kernel density estimation (non-parametric) and GARCH(1,1) models (parametric), among others, for computing the safety stock levels. The results suggest that for shorter lead times, the normality deviation is more important, and kernel density estimation is most suitable. By contrast, for longer lead times, GARCH models are more appropriate because the autocorrelation of the variance of the forecast errors is the most important deviation. In fact, even when no autocorrelation is present in the original demand, such autocorrelation can be present as a consequence of the overlapping process used to compute the lead time forecasts and the uncertainties arising in the estimation of the parameters of the forecasting model. Improvements are shown in terms of cycle service level, inventory investment and backorder volume. Simulations and real demand data from a manufacturer are used to illustrate our methodology. es_ES
dc.description.sponsorship This work was supported by the European Regional Development Fund and the Spanish Government (MINECO/FEDER, UE) under project reference DPI2015-64133-R. The authors would also like to thank the anonymous referees for their useful comments and suggestions es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Omega es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Forecasting es_ES
dc.subject Safety stock es_ES
dc.subject Risk es_ES
dc.subject Supply chain es_ES
dc.subject Prediction intervals es_ES
dc.subject Volatility es_ES
dc.subject Kernel density estimation es_ES
dc.subject GARCH es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Empirical safety stock estimation based on kernel and GARCH models es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.omega.2018.05.004 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-64133-R/ES/MITIGACION DEL EFECTO LATIGO MEDIANTE NOVEDOSAS TECNICAS DE PREDICCION Y CONTROL DE INVENTARIOS UTILIZANDO EL BIG DATA RESULTANTE DE LAS COLABORACIONES INTEREMPRESARIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Trapero, JR.; Cardós, M.; Kourentzes, N. (2019). Empirical safety stock estimation based on kernel and GARCH models. Omega. 84:199-211. https://doi.org/10.1016/j.omega.2018.05.004 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.omega.2018.05.004 es_ES
dc.description.upvformatpinicio 199 es_ES
dc.description.upvformatpfin 211 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 84 es_ES
dc.relation.pasarela S\365667 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem