Mostrar el registro sencillo del ítem
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.contributor.author | Vindel, Pura | es_ES |
dc.date.accessioned | 2021-01-19T04:32:53Z | |
dc.date.available | 2021-01-19T04:32:53Z | |
dc.date.issued | 2019 | es_ES |
dc.identifier.issn | 1392-6292 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159367 | |
dc.description.abstract | [EN] In this paper, we study the dynamics of an iterative method based on the Ermakov-Kalitkin class of iterative schemes for solving nonlinear equations. As it was proven in "A new family of iterative methods widening areas of convergence, Appl. Math. Comput.", this family has the property of getting good estimations of the solution when Newton's method fails. Moreover, the set of converging starting points for several non-polynomial test functions was plotted and they showed to be wider in the case of proposed methods than in Newton's case, for small values of the parameter. Now, we make a complex dynamical analysis of this parametric class in order to justify the stability properties of this family. | es_ES |
dc.description.sponsorship | This research was supported by Spanish Ministry grant MTM2014-52016-C02-2-P, Generalitat Valenciana PROMETEO/2016/089 and UJI project P1.1B20115-16. The authors also want to thank the anonymous referees for their suggestions and comments that have improved the final version of the paper. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Vilnius Gediminas Technical University | es_ES |
dc.relation.ispartof | Mathematical Modelling and Analysis | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Nonlinear problems | es_ES |
dc.subject | Iterative methods | es_ES |
dc.subject | Complex dynamics | es_ES |
dc.subject | Dynamical and parameter planes | es_ES |
dc.subject | Critical points | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Dynamical analysis to explain the numerical anomalies in the family of Ermakov-Kalitkin type methods | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3846/mma.2019.021 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//P1.1B20115-16/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vindel, P. (2019). Dynamical analysis to explain the numerical anomalies in the family of Ermakov-Kalitkin type methods. Mathematical Modelling and Analysis. 24(3):335-350. https://doi.org/10.3846/mma.2019.021 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3846/mma.2019.021 | es_ES |
dc.description.upvformatpinicio | 335 | es_ES |
dc.description.upvformatpfin | 350 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\393529 | es_ES |
dc.contributor.funder | Universitat Jaume I | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Amat, S., Busquier, S., & Plaza, S. (2007). On the dynamics of a family of third-order iterative functions. The ANZIAM Journal, 48(3), 343-359. doi:10.1017/s1446181100003539 | es_ES |
dc.description.references | Beardon, A. F. (Ed.). (1991). Iteration of Rational Functions. Graduate Texts in Mathematics. doi:10.1007/978-1-4612-4422-6 | es_ES |
dc.description.references | Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 11(1), 85-142. doi:10.1090/s0273-0979-1984-15240-6 | es_ES |
dc.description.references | Budzko, D., Cordero, A., & Torregrosa, J. R. (2015). A new family of iterative methods widening areas of convergence. Applied Mathematics and Computation, 252, 405-417. doi:10.1016/j.amc.2014.12.028 | es_ES |
dc.description.references | Campos, B., Cordero, A., Torregrosa, J. R., & Vindel, P. (2014). Dynamics of the family of c-iterative methods. International Journal of Computer Mathematics, 92(9), 1815-1825. doi:10.1080/00207160.2014.893608 | es_ES |
dc.description.references | Chun, C., & Neta, B. (2018). Comparative study of methods of various orders for finding repeated roots of nonlinear equations. Journal of Computational and Applied Mathematics, 340, 11-42. doi:10.1016/j.cam.2018.02.009 | es_ES |
dc.description.references | Cordero, A., García-Maimó, J., Torregrosa, J. R., Vassileva, M. P., & Vindel, P. (2013). Chaos in King’s iterative family. Applied Mathematics Letters, 26(8), 842-848. doi:10.1016/j.aml.2013.03.012 | es_ES |
dc.description.references | Ermakov, V. V., & Kalitkin, N. N. (1981). The optimal step and regularization for Newton’s method. USSR Computational Mathematics and Mathematical Physics, 21(2), 235-242. doi:10.1016/0041-5553(81)90022-7 | es_ES |
dc.description.references | Gutiérrez, J. M., Hernández, M. A., & Romero, N. (2010). Dynamics of a new family of iterative processes for quadratic polynomials. Journal of Computational and Applied Mathematics, 233(10), 2688-2695. doi:10.1016/j.cam.2009.11.017 | es_ES |
dc.description.references | Kim, Y. I., Behl, R., & Motsa, S. S. (2017). AN OPTIMAL FAMILY OF EIGHTH-ORDER ITERATIVE METHODS WITH AN INVERSE INTERPOLATORY RATIONAL FUNCTION ERROR CORRECTOR FOR NONLINEAR EQUATIONS. Mathematical Modelling and Analysis, 22(3), 321-336. doi:10.3846/13926292.2017.1309585 | es_ES |
dc.description.references | Lee, M.-Y., Ik Kim, Y., & Alberto Magreñán, Á. (2017). On the dynamics of a triparametric family of optimal fourth-order multiple-zero finders with a weight function of the principal mth root of a function-to function ratio. Applied Mathematics and Computation, 315, 564-590. doi:10.1016/j.amc.2017.08.005 | es_ES |