- -

Insights on Salt Tolerance of Two Endemic Limonium Species from Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Insights on Salt Tolerance of Two Endemic Limonium Species from Spain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González-Orenga, Sara es_ES
dc.contributor.author Ferrer-Gallego, P. Pablo es_ES
dc.contributor.author Laguna, Emilio es_ES
dc.contributor.author López-Gresa, María Pilar es_ES
dc.contributor.author Donat-Torres, Maria P. es_ES
dc.contributor.author Verdeguer Sancho, Mercedes María es_ES
dc.contributor.author Vicente, Oscar es_ES
dc.contributor.author Boscaiu, Monica es_ES
dc.date.accessioned 2021-01-20T04:31:40Z
dc.date.available 2021-01-20T04:31:40Z
dc.date.issued 2019-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159517
dc.description.abstract [EN] We have analysed the salt tolerance of two endemic halophytes of the genus Limonium, with high conservation value. In the present study, seed germination and growth parameters as well as different biomarkers-photosynthetic pigments, mono and divalent ion contents-associated to salt stress were evaluated in response to high levels of NaCl. The study was completed with an untargeted metabolomics analysis of the primary compounds including carbohydrates, phosphoric and organic acids, and amino acids, identified by using a gas chromatography and mass spectrometry platform. Limonium albuferae proved to be more salt-tolerant than L. doufourii, both at the germination stage and during vegetative growth. The degradation of photosynthetic pigments and the increase of Na+/K+ ratio under salt stress were more accentuated in the less tolerant second species. The metabolomics analysis unravelled several differences between the two species. The higher salt tolerance of L. albuferae may rely on its specific accumulation of fructose and glucose under high salinity conditions, the first considered as a major osmolyte in this genus. In addition, L. albuferae showed steady levels of citric and malic acids, whereas the glutamate family pathway was strongly activated under stress in both species, leading to the accumulation of proline (Pro) and gamma-aminobutyric acid (GABA). es_ES
dc.description.sponsorship This research was funded by GENERALITAT VALENCIANA, grant number AICO/2017/039, to M. Boscaiu. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Metabolites es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Limonium albuferae es_ES
dc.subject Limonium dufourii es_ES
dc.subject Growth parameters es_ES
dc.subject Photosynthetic pigments es_ES
dc.subject Ionic homeostasis es_ES
dc.subject Metabolic profiles es_ES
dc.subject Carbohydrates es_ES
dc.subject Organic acids es_ES
dc.subject Amino acids es_ES
dc.subject Multivariate analysis es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification BOTANICA es_ES
dc.title Insights on Salt Tolerance of Two Endemic Limonium Species from Spain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/metabo9120294 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2017%2F039/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.description.bibliographicCitation González-Orenga, S.; Ferrer-Gallego, PP.; Laguna, E.; López-Gresa, MP.; Donat-Torres, MP.; Verdeguer Sancho, MM.; Vicente, O.... (2019). Insights on Salt Tolerance of Two Endemic Limonium Species from Spain. Metabolites. 9(12):1-22. https://doi.org/10.3390/metabo9120294 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/metabo9120294 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2218-1989 es_ES
dc.identifier.pmid 31795424 es_ES
dc.identifier.pmcid PMC6950247 es_ES
dc.relation.pasarela S\398174 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x es_ES
dc.description.references Kumar, D., Al Hassan, M., Naranjo, M. A., Agrawal, V., Boscaiu, M., & Vicente, O. (2017). Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLOS ONE, 12(9), e0185017. doi:10.1371/journal.pone.0185017 es_ES
dc.description.references Koutroumpa, K., Theodoridis, S., Warren, B. H., Jiménez, A., Celep, F., Doğan, M., … Conti, E. (2018). An expanded molecular phylogeny of Plumbaginaceae, with emphasis on Limonium (sea lavenders): Taxonomic implications and biogeographic considerations. Ecology and Evolution, 8(24), 12397-12424. doi:10.1002/ece3.4553 es_ES
dc.description.references Medail, F., & Quezel, P. (1997). Hot-Spots Analysis for Conservation of Plant Biodiversity in the Mediterranean Basin. Annals of the Missouri Botanical Garden, 84(1), 112. doi:10.2307/2399957 es_ES
dc.description.references Medail, F., & Quezel, P. (1999). Biodiversity Hotspots in the Mediterranean Basin: Setting Global Conservation Priorities. Conservation Biology, 13(6), 1510-1513. doi:10.1046/j.1523-1739.1999.98467.x es_ES
dc.description.references Aedo, C., Medina, L., & Fernández-Albert, M. (2013). Species richness and endemicity in the Spanish vascular flora. Nordic Journal of Botany, 31(4), 478-488. doi:10.1111/j.1756-1051.2012.00009.x es_ES
dc.description.references Lledo, M. D., Crespo, M. B., Fay, M. F., & Chase, M. W. (2005). Molecular phylogenetics of Limonium and related genera (Plumbaginaceae): biogeographical and systematic implications. American Journal of Botany, 92(7), 1189-1198. doi:10.3732/ajb.92.7.1189 es_ES
dc.description.references Plumbaginaceae Jusshttp://ww2.bgbm.org/EuroPlusMed/ es_ES
dc.description.references FERRER-GALLEGO, P. P., ROSELLÓ, R., ROSATO, M., ROSSELLÓ, J. A., & LAGUNA, E. (2016). Limonium albuferae (Plumbaginaceae), a new polyploid species from the Eastern Iberian Peninsula. Phytotaxa, 252(2), 114. doi:10.11646/phytotaxa.252.2.3 es_ES
dc.description.references Baker, H. G. (1966). THE EVOLUTION, FUNCTIONING AND BREAKDOWN OF HETEROMORPHIC INCOMPATIBILITY SYSTEMS. I. THE PLUMBAGINACEAE. Evolution, 20(3), 349-368. doi:10.1111/j.1558-5646.1966.tb03371.x es_ES
dc.description.references Palacios, C., & González‐Candelas, F. (1997). Analysis of population genetic structure and variability using RAPD markers in the endemic and endangered Limonium dufourii (Plumbaginaceae). Molecular Ecology, 6(12), 1107-1121. doi:10.1046/j.1365-294x.1997.00283.x es_ES
dc.description.references Limonium dufouriihttps://bdb.gva.es/bancodedatos/censos/descargaCensos.asp?id=12995&nombre=Limonium&dufourii es_ES
dc.description.references Palacios, C., Kresovich, S., & González-Candelas, F. (1999). A population genetic study of the endangered plant speciesLimonium dufourii(Plumbaginaceae) based on amplified fragment length polymorphism (AFLP). Molecular Ecology, 8(4), 645-657. doi:10.1046/j.1365-294x.1999.t01-1-00597.x es_ES
dc.description.references Rubio‐Casal, A. E., Castillo, J. M., Luque, C. J., & Figueroa, M. E. (2001). Nucleation and facilitation in salt pans in Mediterranean salt marshes. Journal of Vegetation Science, 12(6), 761-770. doi:10.2307/3236863 es_ES
dc.description.references Donohue, K., Rubio de Casas, R., Burghardt, L., Kovach, K., & Willis, C. G. (2010). Germination, Postgermination Adaptation, and Species Ecological Ranges. Annual Review of Ecology, Evolution, and Systematics, 41(1), 293-319. doi:10.1146/annurev-ecolsys-102209-144715 es_ES
dc.description.references Martin-Vide, J., & Lopez-Bustins, J.-A. (2006). The Western Mediterranean Oscillation and rainfall in the Iberian Peninsula. International Journal of Climatology, 26(11), 1455-1475. doi:10.1002/joc.1388 es_ES
dc.description.references Río, S. del, Herrero, L., Fraile, R., & Penas, A. (2011). Spatial distribution of recent rainfall trends in Spain (1961-2006). International Journal of Climatology, 31(5), 656-667. doi:10.1002/joc.2111 es_ES
dc.description.references Grieve, C. M., Poss, J. A., Grattan, S. R., Shouse, P. J., Lieth, J. H., & Zeng, L. (2005). Productivity and Mineral Nutrition of Limonium Species Irrigated with Saline Wastewaters. HortScience, 40(3), 654-658. doi:10.21273/hortsci.40.3.654 es_ES
dc.description.references Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433-447. doi:10.1093/aob/mcu239 es_ES
dc.description.references Kumari, A., Das, P., Parida, A. K., & Agarwal, P. K. (2015). Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00537 es_ES
dc.description.references Gil, R., Boscaiu, M., Lull, C., Bautista, I., Lidón, A., & Vicente, O. (2013). Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology, 40(9), 805. doi:10.1071/fp12359 es_ES
dc.description.references Hildebrandt, T. M. (2018). Synthesis versus degradation: directions of amino acid metabolism during Arabidopsis abiotic stress response. Plant Molecular Biology, 98(1-2), 121-135. doi:10.1007/s11103-018-0767-0 es_ES
dc.description.references Gil, R., Bautista, I., Boscaiu, M., Lidon, A., Wankhade, S., Sanchez, H., … Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 6(0), plu049-plu049. doi:10.1093/aobpla/plu049 es_ES
dc.description.references Houle, G., Morel, L., Reynolds, C. E., & Siégel, J. (2001). The effect of salinity on different developmental stages of an endemic annual plant, Aster laurentianus (Asteraceae). American Journal of Botany, 88(1), 62-67. doi:10.2307/2657127 es_ES
dc.description.references Giménez Luque, E., Delgado Fernández, I. C., & Gómez Mercado, F. (2013). Effect of salinity and temperature on seed germination in Limonium cossonianum. Botany, 91(1), 12-16. doi:10.1139/cjb-2012-0157 es_ES
dc.description.references Delgado Fernández, I. C., Giménez Luque, E., Gómez Mercado, F., & Pedrosa, W. (2016). Influence of temperature and salinity on the germination of Limonium tabernense Erben from Tabernas Desert (Almería, SE Spain). Flora - Morphology, Distribution, Functional Ecology of Plants, 218, 68-74. doi:10.1016/j.flora.2015.12.001 es_ES
dc.description.references Al Hassan, M., Estrelles, E., Soriano, P., López-Gresa, M. P., Bellés, J. M., Boscaiu, M., & Vicente, O. (2017). Unraveling Salt Tolerance Mechanisms in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01438 es_ES
dc.description.references Zia, S., & Khan, M. A. (2004). Effect of light, salinity, and temperature on seed germination of Limonium stocksii. Canadian Journal of Botany, 82(2), 151-157. doi:10.1139/b03-118 es_ES
dc.description.references Redondo-Gómez, S., Naranjo, E. M., Garzón, O., Castillo, J. M., Luque, T., & Figueroa, M. E. (2008). Effects of Salinity on Germination and Seedling Establishment of Endangered Limonium emarginatum (Willd.) O. Kuntze. Journal of Coastal Research, 1, 201-205. doi:10.2112/05-0617.1 es_ES
dc.description.references Vicente, O., Boscaiu, M., Naranjo, M. Á., Estrelles, E., Bellés, J. M., & Soriano, P. (2004). Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). Journal of Arid Environments, 58(4), 463-481. doi:10.1016/j.jaridenv.2003.12.003 es_ES
dc.description.references Boscaiu, M., Ballesteros, G., Naranjo, M. A., Vicente, O., & Boira, H. (2011). Responses to salt stress in Juncus acutus and J. maritimus during seed germination and vegetative plant growth. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 145(4), 770-777. doi:10.1080/11263504.2011.628446 es_ES
dc.description.references Zhang, H., Irving, L. J., Tian, Y., & Zhou, D. (2012). Influence of salinity and temperature on seed germination rate and the hydrotime model parameters for the halophyte, Chloris virgata, and the glycophyte, Digitaria sanguinalis. South African Journal of Botany, 78, 203-210. doi:10.1016/j.sajb.2011.08.008 es_ES
dc.description.references Manzoor, S., Hameed, A., Khan, M. A., & Gul, B. (2017). Seed germination ecology of a medicinal halophyte Zygophyllum propinquum : responses to abiotic factors. Flora, 233, 163-170. doi:10.1016/j.flora.2017.06.004 es_ES
dc.description.references Gul, B., Ansari, R., Flowers, T. J., & Khan, M. A. (2013). Germination strategies of halophyte seeds under salinity. Environmental and Experimental Botany, 92, 4-18. doi:10.1016/j.envexpbot.2012.11.006 es_ES
dc.description.references Keiffer, C. H., & Ungar, I. A. (1997). The effect of extended exposure to hypersaline conditions on the germination of five inland halophyte species. American Journal of Botany, 84(1), 104-111. doi:10.2307/2445887 es_ES
dc.description.references PUJOL, J. (2000). Recovery of Germination from Different Osmotic Conditions by Four Halophytes from Southeastern Spain. Annals of Botany, 85(2), 279-286. doi:10.1006/anbo.1999.1028 es_ES
dc.description.references Al Hassan, M., López-Gresa, M. del P., Boscaiu, M., & Vicente, O. (2016). Stress tolerance mechanisms in Juncus: responses to salinity and drought in three Juncus species adapted to different natural environments. Functional Plant Biology, 43(10), 949. doi:10.1071/fp16007 es_ES
dc.description.references Al Hassan, M., Pacurar, A., López-Gresa, M. P., Donat-Torres, M. P., Llinares, J. V., Boscaiu, M., & Vicente, O. (2016). Effects of Salt Stress on Three Ecologically Distinct Plantago Species. PLOS ONE, 11(8), e0160236. doi:10.1371/journal.pone.0160236 es_ES
dc.description.references Flowers, T. J., Hajibagheri, M. A., & Clipson, N. J. W. (1986). Halophytes. The Quarterly Review of Biology, 61(3), 313-337. doi:10.1086/415032 es_ES
dc.description.references Aymen, S., Morena, G., Vincenzo, L., Laura, P., Lorenza, B., Abderrazak, S., … Karim, B. H. (2016). Salt tolerance of the halophyte Limonium delicatulum is more associated with antioxidant enzyme activities than phenolic compounds. Functional Plant Biology, 43(7), 607. doi:10.1071/fp15284 es_ES
dc.description.references GIL, R., LULL, C., BOSCAIU, M., BAUTISTA, I., LIDÓN, A., & VICENTE, O. (2011). Soluble Carbohydrates as Osmolytes in Several Halophytes from a Mediterranean Salt Marsh. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(2), 09. doi:10.15835/nbha3927176 es_ES
dc.description.references Boscaiu, M., Lull, C., Llinares, J., Vicente, O., & Boira, H. (2012). Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. Journal of Plant Ecology, 6(2), 177-186. doi:10.1093/jpe/rts017 es_ES
dc.description.references Al Hassan, M., Chaura, J., López-Gresa, M. P., Borsai, O., Daniso, E., Donat-Torres, M. P., … Boscaiu, M. (2016). Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00473 es_ES
dc.description.references Alarcón, J. J., Morales, M. A., Torrecillas, A., & Sánchez-Blanco, M. J. (1999). Growth, Water Relations and Accumulation of Organic and Inorganic Solutes in the Halophyte Limonium latifolium cv. Avignon and its Interspecific Hybrid Limonium cas pia x Limonium latifolium cv. Beltlaard During Salt Stress. Journal of Plant Physiology, 154(5-6), 795-801. doi:10.1016/s0176-1617(99)80260-0 es_ES
dc.description.references Morales, M. A., Olmos, E., Torrecillas, A., Sánchez-Blanco, M. J., & Alarcón, J. J. (2001). Differences in water relations, leaf ion accumulation and excretion rates between cultivated and wild species of Limonium sp. grown in conditions of saline stress. Flora, 196(5), 345-352. doi:10.1016/s0367-2530(17)30070-1 es_ES
dc.description.references Carter, C. T., Grieve, C. M., & Poss, J. A. (2005). Salinity Effects on Emergence, Survival, and Ion Accumulation ofLimonium perezii. Journal of Plant Nutrition, 28(7), 1243-1257. doi:10.1081/pln-200063293 es_ES
dc.description.references Greenway, H., & Munns, R. (1980). Mechanisms of Salt Tolerance in Nonhalophytes. Annual Review of Plant Physiology, 31(1), 149-190. doi:10.1146/annurev.pp.31.060180.001053 es_ES
dc.description.references Assaha, D. V. M., Ueda, A., Saneoka, H., Al-Yahyai, R., & Yaish, M. W. (2017). The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00509 es_ES
dc.description.references Hepler, P. K. (2005). Calcium: A Central Regulator of Plant Growth and Development. The Plant Cell, 17(8), 2142-2155. doi:10.1105/tpc.105.032508 es_ES
dc.description.references Mahajan, S., Pandey, G. K., & Tuteja, N. (2008). Calcium- and salt-stress signaling in plants: Shedding light on SOS pathway. Archives of Biochemistry and Biophysics, 471(2), 146-158. doi:10.1016/j.abb.2008.01.010 es_ES
dc.description.references Ding, F., Chen, M., Sui, N., & Wang, B.-S. (2010). Ca2+ significantly enhanced development and salt-secretion rate of salt glands of Limonium bicolor under NaCl treatment. South African Journal of Botany, 76(1), 95-101. doi:10.1016/j.sajb.2009.09.001 es_ES
dc.description.references Gagneul, D., Aïnouche, A., Duhazé, C., Lugan, R., Larher, F. R., & Bouchereau, A. (2007). A Reassessment of the Function of the So-Called Compatible Solutes in the Halophytic Plumbaginaceae Limonium latifolium  . Plant Physiology, 144(3), 1598-1611. doi:10.1104/pp.107.099820 es_ES
dc.description.references Liu, X., & Grieve, C. (2009). Accumulation of Chiro-inositol and Other Non-structural Carbohydrates in Limonium Species in Response to Saline Irrigation Waters. Journal of the American Society for Horticultural Science, 134(3), 329-336. doi:10.21273/jashs.134.3.329 es_ES
dc.description.references Sanchez, D. H., Siahpoosh, M. R., Roessner, U., Udvardi, M., & Kopka, J. (2007). Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia Plantarum, 0(0), 071202165636002-??? doi:10.1111/j.1399-3054.2007.00993.x es_ES
dc.description.references Planchet, E., & Limami, A. M. (2015). Amino acid synthesis under abiotic stress. Amino acids in higher plants, 262-276. doi:10.1079/9781780642635.0262 es_ES
dc.description.references Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009 es_ES
dc.description.references Cheng, B., Li, Z., Liang, L., Cao, Y., Zeng, W., Zhang, X., … Peng, Y. (2018). The γ-Aminobutyric Acid (GABA) Alleviates Salt Stress Damage during Seeds Germination of White Clover Associated with Na+/K+ Transportation, Dehydrins Accumulation, and Stress-Related Genes Expression in White Clover. International Journal of Molecular Sciences, 19(9), 2520. doi:10.3390/ijms19092520 es_ES
dc.description.references LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591 es_ES
dc.description.references Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.x es_ES
dc.description.references Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. The Plant Journal, 23(1), 131-142. doi:10.1046/j.1365-313x.2000.00774.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem