Mostrar el registro sencillo del ítem
dc.contributor.author | González-Orenga, Sara | es_ES |
dc.contributor.author | Ferrer-Gallego, P. Pablo | es_ES |
dc.contributor.author | Laguna, Emilio | es_ES |
dc.contributor.author | López-Gresa, María Pilar | es_ES |
dc.contributor.author | Donat-Torres, Maria P. | es_ES |
dc.contributor.author | Verdeguer Sancho, Mercedes María | es_ES |
dc.contributor.author | Vicente, Oscar | es_ES |
dc.contributor.author | Boscaiu, Monica | es_ES |
dc.date.accessioned | 2021-01-20T04:31:40Z | |
dc.date.available | 2021-01-20T04:31:40Z | |
dc.date.issued | 2019-12 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159517 | |
dc.description.abstract | [EN] We have analysed the salt tolerance of two endemic halophytes of the genus Limonium, with high conservation value. In the present study, seed germination and growth parameters as well as different biomarkers-photosynthetic pigments, mono and divalent ion contents-associated to salt stress were evaluated in response to high levels of NaCl. The study was completed with an untargeted metabolomics analysis of the primary compounds including carbohydrates, phosphoric and organic acids, and amino acids, identified by using a gas chromatography and mass spectrometry platform. Limonium albuferae proved to be more salt-tolerant than L. doufourii, both at the germination stage and during vegetative growth. The degradation of photosynthetic pigments and the increase of Na+/K+ ratio under salt stress were more accentuated in the less tolerant second species. The metabolomics analysis unravelled several differences between the two species. The higher salt tolerance of L. albuferae may rely on its specific accumulation of fructose and glucose under high salinity conditions, the first considered as a major osmolyte in this genus. In addition, L. albuferae showed steady levels of citric and malic acids, whereas the glutamate family pathway was strongly activated under stress in both species, leading to the accumulation of proline (Pro) and gamma-aminobutyric acid (GABA). | es_ES |
dc.description.sponsorship | This research was funded by GENERALITAT VALENCIANA, grant number AICO/2017/039, to M. Boscaiu. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Metabolites | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Limonium albuferae | es_ES |
dc.subject | Limonium dufourii | es_ES |
dc.subject | Growth parameters | es_ES |
dc.subject | Photosynthetic pigments | es_ES |
dc.subject | Ionic homeostasis | es_ES |
dc.subject | Metabolic profiles | es_ES |
dc.subject | Carbohydrates | es_ES |
dc.subject | Organic acids | es_ES |
dc.subject | Amino acids | es_ES |
dc.subject | Multivariate analysis | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.subject.classification | BOTANICA | es_ES |
dc.title | Insights on Salt Tolerance of Two Endemic Limonium Species from Spain | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/metabo9120294 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2017%2F039/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals | es_ES |
dc.description.bibliographicCitation | González-Orenga, S.; Ferrer-Gallego, PP.; Laguna, E.; López-Gresa, MP.; Donat-Torres, MP.; Verdeguer Sancho, MM.; Vicente, O.... (2019). Insights on Salt Tolerance of Two Endemic Limonium Species from Spain. Metabolites. 9(12):1-22. https://doi.org/10.3390/metabo9120294 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/metabo9120294 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.eissn | 2218-1989 | es_ES |
dc.identifier.pmid | 31795424 | es_ES |
dc.identifier.pmcid | PMC6950247 | es_ES |
dc.relation.pasarela | S\398174 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x | es_ES |
dc.description.references | Kumar, D., Al Hassan, M., Naranjo, M. A., Agrawal, V., Boscaiu, M., & Vicente, O. (2017). Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLOS ONE, 12(9), e0185017. doi:10.1371/journal.pone.0185017 | es_ES |
dc.description.references | Koutroumpa, K., Theodoridis, S., Warren, B. H., Jiménez, A., Celep, F., Doğan, M., … Conti, E. (2018). An expanded molecular phylogeny of Plumbaginaceae, with emphasis on Limonium (sea lavenders): Taxonomic implications and biogeographic considerations. Ecology and Evolution, 8(24), 12397-12424. doi:10.1002/ece3.4553 | es_ES |
dc.description.references | Medail, F., & Quezel, P. (1997). Hot-Spots Analysis for Conservation of Plant Biodiversity in the Mediterranean Basin. Annals of the Missouri Botanical Garden, 84(1), 112. doi:10.2307/2399957 | es_ES |
dc.description.references | Medail, F., & Quezel, P. (1999). Biodiversity Hotspots in the Mediterranean Basin: Setting Global Conservation Priorities. Conservation Biology, 13(6), 1510-1513. doi:10.1046/j.1523-1739.1999.98467.x | es_ES |
dc.description.references | Aedo, C., Medina, L., & Fernández-Albert, M. (2013). Species richness and endemicity in the Spanish vascular flora. Nordic Journal of Botany, 31(4), 478-488. doi:10.1111/j.1756-1051.2012.00009.x | es_ES |
dc.description.references | Lledo, M. D., Crespo, M. B., Fay, M. F., & Chase, M. W. (2005). Molecular phylogenetics of Limonium and related genera (Plumbaginaceae): biogeographical and systematic implications. American Journal of Botany, 92(7), 1189-1198. doi:10.3732/ajb.92.7.1189 | es_ES |
dc.description.references | Plumbaginaceae Jusshttp://ww2.bgbm.org/EuroPlusMed/ | es_ES |
dc.description.references | FERRER-GALLEGO, P. P., ROSELLÓ, R., ROSATO, M., ROSSELLÓ, J. A., & LAGUNA, E. (2016). Limonium albuferae (Plumbaginaceae), a new polyploid species from the Eastern Iberian Peninsula. Phytotaxa, 252(2), 114. doi:10.11646/phytotaxa.252.2.3 | es_ES |
dc.description.references | Baker, H. G. (1966). THE EVOLUTION, FUNCTIONING AND BREAKDOWN OF HETEROMORPHIC INCOMPATIBILITY SYSTEMS. I. THE PLUMBAGINACEAE. Evolution, 20(3), 349-368. doi:10.1111/j.1558-5646.1966.tb03371.x | es_ES |
dc.description.references | Palacios, C., & González‐Candelas, F. (1997). Analysis of population genetic structure and variability using RAPD markers in the endemic and endangered Limonium dufourii (Plumbaginaceae). Molecular Ecology, 6(12), 1107-1121. doi:10.1046/j.1365-294x.1997.00283.x | es_ES |
dc.description.references | Limonium dufouriihttps://bdb.gva.es/bancodedatos/censos/descargaCensos.asp?id=12995&nombre=Limonium&dufourii | es_ES |
dc.description.references | Palacios, C., Kresovich, S., & González-Candelas, F. (1999). A population genetic study of the endangered plant speciesLimonium dufourii(Plumbaginaceae) based on amplified fragment length polymorphism (AFLP). Molecular Ecology, 8(4), 645-657. doi:10.1046/j.1365-294x.1999.t01-1-00597.x | es_ES |
dc.description.references | Rubio‐Casal, A. E., Castillo, J. M., Luque, C. J., & Figueroa, M. E. (2001). Nucleation and facilitation in salt pans in Mediterranean salt marshes. Journal of Vegetation Science, 12(6), 761-770. doi:10.2307/3236863 | es_ES |
dc.description.references | Donohue, K., Rubio de Casas, R., Burghardt, L., Kovach, K., & Willis, C. G. (2010). Germination, Postgermination Adaptation, and Species Ecological Ranges. Annual Review of Ecology, Evolution, and Systematics, 41(1), 293-319. doi:10.1146/annurev-ecolsys-102209-144715 | es_ES |
dc.description.references | Martin-Vide, J., & Lopez-Bustins, J.-A. (2006). The Western Mediterranean Oscillation and rainfall in the Iberian Peninsula. International Journal of Climatology, 26(11), 1455-1475. doi:10.1002/joc.1388 | es_ES |
dc.description.references | Río, S. del, Herrero, L., Fraile, R., & Penas, A. (2011). Spatial distribution of recent rainfall trends in Spain (1961-2006). International Journal of Climatology, 31(5), 656-667. doi:10.1002/joc.2111 | es_ES |
dc.description.references | Grieve, C. M., Poss, J. A., Grattan, S. R., Shouse, P. J., Lieth, J. H., & Zeng, L. (2005). Productivity and Mineral Nutrition of Limonium Species Irrigated with Saline Wastewaters. HortScience, 40(3), 654-658. doi:10.21273/hortsci.40.3.654 | es_ES |
dc.description.references | Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433-447. doi:10.1093/aob/mcu239 | es_ES |
dc.description.references | Kumari, A., Das, P., Parida, A. K., & Agarwal, P. K. (2015). Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00537 | es_ES |
dc.description.references | Gil, R., Boscaiu, M., Lull, C., Bautista, I., Lidón, A., & Vicente, O. (2013). Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology, 40(9), 805. doi:10.1071/fp12359 | es_ES |
dc.description.references | Hildebrandt, T. M. (2018). Synthesis versus degradation: directions of amino acid metabolism during Arabidopsis abiotic stress response. Plant Molecular Biology, 98(1-2), 121-135. doi:10.1007/s11103-018-0767-0 | es_ES |
dc.description.references | Gil, R., Bautista, I., Boscaiu, M., Lidon, A., Wankhade, S., Sanchez, H., … Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 6(0), plu049-plu049. doi:10.1093/aobpla/plu049 | es_ES |
dc.description.references | Houle, G., Morel, L., Reynolds, C. E., & Siégel, J. (2001). The effect of salinity on different developmental stages of an endemic annual plant, Aster laurentianus (Asteraceae). American Journal of Botany, 88(1), 62-67. doi:10.2307/2657127 | es_ES |
dc.description.references | Giménez Luque, E., Delgado Fernández, I. C., & Gómez Mercado, F. (2013). Effect of salinity and temperature on seed germination in Limonium cossonianum. Botany, 91(1), 12-16. doi:10.1139/cjb-2012-0157 | es_ES |
dc.description.references | Delgado Fernández, I. C., Giménez Luque, E., Gómez Mercado, F., & Pedrosa, W. (2016). Influence of temperature and salinity on the germination of Limonium tabernense Erben from Tabernas Desert (Almería, SE Spain). Flora - Morphology, Distribution, Functional Ecology of Plants, 218, 68-74. doi:10.1016/j.flora.2015.12.001 | es_ES |
dc.description.references | Al Hassan, M., Estrelles, E., Soriano, P., López-Gresa, M. P., Bellés, J. M., Boscaiu, M., & Vicente, O. (2017). Unraveling Salt Tolerance Mechanisms in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01438 | es_ES |
dc.description.references | Zia, S., & Khan, M. A. (2004). Effect of light, salinity, and temperature on seed germination of Limonium stocksii. Canadian Journal of Botany, 82(2), 151-157. doi:10.1139/b03-118 | es_ES |
dc.description.references | Redondo-Gómez, S., Naranjo, E. M., Garzón, O., Castillo, J. M., Luque, T., & Figueroa, M. E. (2008). Effects of Salinity on Germination and Seedling Establishment of Endangered Limonium emarginatum (Willd.) O. Kuntze. Journal of Coastal Research, 1, 201-205. doi:10.2112/05-0617.1 | es_ES |
dc.description.references | Vicente, O., Boscaiu, M., Naranjo, M. Á., Estrelles, E., Bellés, J. M., & Soriano, P. (2004). Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). Journal of Arid Environments, 58(4), 463-481. doi:10.1016/j.jaridenv.2003.12.003 | es_ES |
dc.description.references | Boscaiu, M., Ballesteros, G., Naranjo, M. A., Vicente, O., & Boira, H. (2011). Responses to salt stress in Juncus acutus and J. maritimus during seed germination and vegetative plant growth. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 145(4), 770-777. doi:10.1080/11263504.2011.628446 | es_ES |
dc.description.references | Zhang, H., Irving, L. J., Tian, Y., & Zhou, D. (2012). Influence of salinity and temperature on seed germination rate and the hydrotime model parameters for the halophyte, Chloris virgata, and the glycophyte, Digitaria sanguinalis. South African Journal of Botany, 78, 203-210. doi:10.1016/j.sajb.2011.08.008 | es_ES |
dc.description.references | Manzoor, S., Hameed, A., Khan, M. A., & Gul, B. (2017). Seed germination ecology of a medicinal halophyte Zygophyllum propinquum : responses to abiotic factors. Flora, 233, 163-170. doi:10.1016/j.flora.2017.06.004 | es_ES |
dc.description.references | Gul, B., Ansari, R., Flowers, T. J., & Khan, M. A. (2013). Germination strategies of halophyte seeds under salinity. Environmental and Experimental Botany, 92, 4-18. doi:10.1016/j.envexpbot.2012.11.006 | es_ES |
dc.description.references | Keiffer, C. H., & Ungar, I. A. (1997). The effect of extended exposure to hypersaline conditions on the germination of five inland halophyte species. American Journal of Botany, 84(1), 104-111. doi:10.2307/2445887 | es_ES |
dc.description.references | PUJOL, J. (2000). Recovery of Germination from Different Osmotic Conditions by Four Halophytes from Southeastern Spain. Annals of Botany, 85(2), 279-286. doi:10.1006/anbo.1999.1028 | es_ES |
dc.description.references | Al Hassan, M., López-Gresa, M. del P., Boscaiu, M., & Vicente, O. (2016). Stress tolerance mechanisms in Juncus: responses to salinity and drought in three Juncus species adapted to different natural environments. Functional Plant Biology, 43(10), 949. doi:10.1071/fp16007 | es_ES |
dc.description.references | Al Hassan, M., Pacurar, A., López-Gresa, M. P., Donat-Torres, M. P., Llinares, J. V., Boscaiu, M., & Vicente, O. (2016). Effects of Salt Stress on Three Ecologically Distinct Plantago Species. PLOS ONE, 11(8), e0160236. doi:10.1371/journal.pone.0160236 | es_ES |
dc.description.references | Flowers, T. J., Hajibagheri, M. A., & Clipson, N. J. W. (1986). Halophytes. The Quarterly Review of Biology, 61(3), 313-337. doi:10.1086/415032 | es_ES |
dc.description.references | Aymen, S., Morena, G., Vincenzo, L., Laura, P., Lorenza, B., Abderrazak, S., … Karim, B. H. (2016). Salt tolerance of the halophyte Limonium delicatulum is more associated with antioxidant enzyme activities than phenolic compounds. Functional Plant Biology, 43(7), 607. doi:10.1071/fp15284 | es_ES |
dc.description.references | GIL, R., LULL, C., BOSCAIU, M., BAUTISTA, I., LIDÓN, A., & VICENTE, O. (2011). Soluble Carbohydrates as Osmolytes in Several Halophytes from a Mediterranean Salt Marsh. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(2), 09. doi:10.15835/nbha3927176 | es_ES |
dc.description.references | Boscaiu, M., Lull, C., Llinares, J., Vicente, O., & Boira, H. (2012). Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. Journal of Plant Ecology, 6(2), 177-186. doi:10.1093/jpe/rts017 | es_ES |
dc.description.references | Al Hassan, M., Chaura, J., López-Gresa, M. P., Borsai, O., Daniso, E., Donat-Torres, M. P., … Boscaiu, M. (2016). Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00473 | es_ES |
dc.description.references | Alarcón, J. J., Morales, M. A., Torrecillas, A., & Sánchez-Blanco, M. J. (1999). Growth, Water Relations and Accumulation of Organic and Inorganic Solutes in the Halophyte Limonium latifolium cv. Avignon and its Interspecific Hybrid Limonium cas pia x Limonium latifolium cv. Beltlaard During Salt Stress. Journal of Plant Physiology, 154(5-6), 795-801. doi:10.1016/s0176-1617(99)80260-0 | es_ES |
dc.description.references | Morales, M. A., Olmos, E., Torrecillas, A., Sánchez-Blanco, M. J., & Alarcón, J. J. (2001). Differences in water relations, leaf ion accumulation and excretion rates between cultivated and wild species of Limonium sp. grown in conditions of saline stress. Flora, 196(5), 345-352. doi:10.1016/s0367-2530(17)30070-1 | es_ES |
dc.description.references | Carter, C. T., Grieve, C. M., & Poss, J. A. (2005). Salinity Effects on Emergence, Survival, and Ion Accumulation ofLimonium perezii. Journal of Plant Nutrition, 28(7), 1243-1257. doi:10.1081/pln-200063293 | es_ES |
dc.description.references | Greenway, H., & Munns, R. (1980). Mechanisms of Salt Tolerance in Nonhalophytes. Annual Review of Plant Physiology, 31(1), 149-190. doi:10.1146/annurev.pp.31.060180.001053 | es_ES |
dc.description.references | Assaha, D. V. M., Ueda, A., Saneoka, H., Al-Yahyai, R., & Yaish, M. W. (2017). The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00509 | es_ES |
dc.description.references | Hepler, P. K. (2005). Calcium: A Central Regulator of Plant Growth and Development. The Plant Cell, 17(8), 2142-2155. doi:10.1105/tpc.105.032508 | es_ES |
dc.description.references | Mahajan, S., Pandey, G. K., & Tuteja, N. (2008). Calcium- and salt-stress signaling in plants: Shedding light on SOS pathway. Archives of Biochemistry and Biophysics, 471(2), 146-158. doi:10.1016/j.abb.2008.01.010 | es_ES |
dc.description.references | Ding, F., Chen, M., Sui, N., & Wang, B.-S. (2010). Ca2+ significantly enhanced development and salt-secretion rate of salt glands of Limonium bicolor under NaCl treatment. South African Journal of Botany, 76(1), 95-101. doi:10.1016/j.sajb.2009.09.001 | es_ES |
dc.description.references | Gagneul, D., Aïnouche, A., Duhazé, C., Lugan, R., Larher, F. R., & Bouchereau, A. (2007). A Reassessment of the Function of the So-Called Compatible Solutes in the Halophytic Plumbaginaceae Limonium latifolium . Plant Physiology, 144(3), 1598-1611. doi:10.1104/pp.107.099820 | es_ES |
dc.description.references | Liu, X., & Grieve, C. (2009). Accumulation of Chiro-inositol and Other Non-structural Carbohydrates in Limonium Species in Response to Saline Irrigation Waters. Journal of the American Society for Horticultural Science, 134(3), 329-336. doi:10.21273/jashs.134.3.329 | es_ES |
dc.description.references | Sanchez, D. H., Siahpoosh, M. R., Roessner, U., Udvardi, M., & Kopka, J. (2007). Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia Plantarum, 0(0), 071202165636002-??? doi:10.1111/j.1399-3054.2007.00993.x | es_ES |
dc.description.references | Planchet, E., & Limami, A. M. (2015). Amino acid synthesis under abiotic stress. Amino acids in higher plants, 262-276. doi:10.1079/9781780642635.0262 | es_ES |
dc.description.references | Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009 | es_ES |
dc.description.references | Cheng, B., Li, Z., Liang, L., Cao, Y., Zeng, W., Zhang, X., … Peng, Y. (2018). The γ-Aminobutyric Acid (GABA) Alleviates Salt Stress Damage during Seeds Germination of White Clover Associated with Na+/K+ Transportation, Dehydrins Accumulation, and Stress-Related Genes Expression in White Clover. International Journal of Molecular Sciences, 19(9), 2520. doi:10.3390/ijms19092520 | es_ES |
dc.description.references | LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591 | es_ES |
dc.description.references | Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.x | es_ES |
dc.description.references | Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. The Plant Journal, 23(1), 131-142. doi:10.1046/j.1365-313x.2000.00774.x | es_ES |