- -

Mesoporous Beta zeolite functionalisation with FexCry oligocations; catalytic activity in the NH3-SCO process

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mesoporous Beta zeolite functionalisation with FexCry oligocations; catalytic activity in the NH3-SCO process

Mostrar el registro completo del ítem

Rutkowska, M.; Duda, M.; Macina, D.; Górecka, S.; Debek, R.; Moreno-Rodríguez, JM.; Díaz Morales, UM.... (2019). Mesoporous Beta zeolite functionalisation with FexCry oligocations; catalytic activity in the NH3-SCO process. Microporous and Mesoporous Materials. 278:1-13. https://doi.org/10.1016/j.micromeso.2018.11.003

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159520

Ficheros en el ítem

Metadatos del ítem

Título: Mesoporous Beta zeolite functionalisation with FexCry oligocations; catalytic activity in the NH3-SCO process
Autor: Rutkowska, M. Duda, M. Macina, D. Górecka, S. Debek, R. Moreno-Rodríguez, José María DÍAZ MORALES, URBANO MANUEL Chmielarz, L.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] In the presented study, H-Beta zeolite and H-Beta/meso (mesoporous Beta zeolite obtained by a mesotemplate-free method) were modified with Fe-3, Fe2Cr, FeCr2 and Cr-3 triple-metallic aggregates (oligocations) by ...[+]
Palabras clave: Beta zeolite , Mesoporous Beta , Oligocations , NH3-SCO
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Microporous and Mesoporous Materials. (issn: 1387-1811 )
DOI: 10.1016/j.micromeso.2018.11.003
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.micromeso.2018.11.003
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/
info:eu-repo/grantAgreement/NCN//2012%2F05%2FB%2FST5%2F00269/
info:eu-repo/grantAgreement/Ministerstwo Edukacji i Nauki//0670%2FIP3%2F2016%2F74/
Agradecimientos:
This work was carried out in the frame of project No. 0670/IP3/2016/74 from the Polish Ministry of Science and Higher Education in the years 2016-2019 and in the frame of project No. 2012/05/B/ST5/00269 from the National ...[+]
Tipo: Artículo

References

Chmielarz, L., & Jabłońska, M. (2015). Advances in selective catalytic oxidation of ammonia to dinitrogen: a review. RSC Advances, 5(54), 43408-43431. doi:10.1039/c5ra03218k

Jabłońska, M., & Palkovits, R. (2016). Copper based catalysts for the selective ammonia oxidation into nitrogen and water vapour—Recent trends and open challenges. Applied Catalysis B: Environmental, 181, 332-351. doi:10.1016/j.apcatb.2015.07.017

QI, G. (2004). Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe-exchanged zeolites prepared by sublimation of FeCl3. Journal of Catalysis, 226(1), 120-128. doi:10.1016/j.jcat.2004.05.023 [+]
Chmielarz, L., & Jabłońska, M. (2015). Advances in selective catalytic oxidation of ammonia to dinitrogen: a review. RSC Advances, 5(54), 43408-43431. doi:10.1039/c5ra03218k

Jabłońska, M., & Palkovits, R. (2016). Copper based catalysts for the selective ammonia oxidation into nitrogen and water vapour—Recent trends and open challenges. Applied Catalysis B: Environmental, 181, 332-351. doi:10.1016/j.apcatb.2015.07.017

QI, G. (2004). Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe-exchanged zeolites prepared by sublimation of FeCl3. Journal of Catalysis, 226(1), 120-128. doi:10.1016/j.jcat.2004.05.023

Akah, A., Cundy, C., & Garforth, A. (2005). The selective catalytic oxidation of NH3 over Fe-ZSM-5. Applied Catalysis B: Environmental, 59(3-4), 221-226. doi:10.1016/j.apcatb.2004.10.020

Li, P., Zhang, R., Liu, N., & Royer, S. (2017). Efficiency of Cu and Pd substitution in Fe-based perovskites to promote N2 formation during NH3 selective catalytic oxidation (NH3-SCO). Applied Catalysis B: Environmental, 203, 174-188. doi:10.1016/j.apcatb.2016.10.021

Chmielarz, L., Kuśtrowski, P., Drozdek, M., Dziembaj, R., Cool, P., & Vansant, E. F. (2006). Selective catalytic oxidation of ammonia into nitrogen over PCH modified with copper and iron species. Catalysis Today, 114(2-3), 319-325. doi:10.1016/j.cattod.2006.01.020

Chmielarz, L., Węgrzyn, A., Wojciechowska, M., Witkowski, S., & Michalik, M. (2011). Selective Catalytic Oxidation (SCO) of Ammonia to Nitrogen over Hydrotalcite Originated Mg–Cu–Fe Mixed Metal Oxides. Catalysis Letters, 141(9), 1345-1354. doi:10.1007/s10562-011-0653-8

Chmielarz, L., Jabłońska, M., Strumiński, A., Piwowarska, Z., Węgrzyn, A., Witkowski, S., & Michalik, M. (2013). Selective catalytic oxidation of ammonia to nitrogen over Mg-Al, Cu-Mg-Al and Fe-Mg-Al mixed metal oxides doped with noble metals. Applied Catalysis B: Environmental, 130-131, 152-162. doi:10.1016/j.apcatb.2012.11.004

Kowalczyk, A., Borcuch, A., Michalik, M., Rutkowska, M., Gil, B., Sojka, Z., … Chmielarz, L. (2017). MCM-41 modified with transition metals by template ion-exchange method as catalysts for selective catalytic oxidation of ammonia to dinitrogen. Microporous and Mesoporous Materials, 240, 9-21. doi:10.1016/j.micromeso.2016.11.002

Jabłońska, M., Król, A., Kukulska-Zajac, E., Tarach, K., Chmielarz, L., & Góra-Marek, K. (2014). Zeolite Y modified with palladium as effective catalyst for selective catalytic oxidation of ammonia to nitrogen. Journal of Catalysis, 316, 36-46. doi:10.1016/j.jcat.2014.04.022

Chmielarz, L., Kuśtrowski, P., Rafalska-Łasocha, A., & Dziembaj, R. (2005). Selective oxidation of ammonia to nitrogen on transition metal containing mixed metal oxides. Applied Catalysis B: Environmental, 58(3-4), 235-244. doi:10.1016/j.apcatb.2004.12.009

Kim, M.-S., Lee, D.-W., Chung, S.-H., Hong, Y.-K., Lee, S. H., Oh, S.-H., … Lee, K.-Y. (2012). Oxidation of ammonia to nitrogen over Pt/Fe/ZSM5 catalyst: Influence of catalyst support on the low temperature activity. Journal of Hazardous Materials, 237-238, 153-160. doi:10.1016/j.jhazmat.2012.08.026

Rutkowska, M., Chmielarz, L., Macina, D., Piwowarska, Z., Dudek, B., Adamski, A., … Cool, P. (2014). Catalytic decomposition and reduction of N2O over micro-mesoporous materials containing Beta zeolite nanoparticles. Applied Catalysis B: Environmental, 146, 112-122. doi:10.1016/j.apcatb.2013.05.005

Long, R. Q., & Yang, R. T. (2000). Superior ion-exchanged ZSM-5 catalysts for selective catalytic oxidation of ammonia to nitrogen. Chemical Communications, (17), 1651-1652. doi:10.1039/b004957n

Sazonova, N. N., Simakov, A. V., Nikoro, T. A., Barannik, G. B., Lyakhova, V. F., Zheivot, V. I., … Veringa, H. (1996). Selective catalytic oxidation of ammonia to nitrogen. Reaction Kinetics & Catalysis Letters, 57(1), 71-79. doi:10.1007/bf02076122

Curtin, T., & Lenihan, S. (2003). Copper exchanged beta zeolites for the catalytic oxidation of ammonia. Chemical Communications, (11), 1280. doi:10.1039/b301894f

Lenihan, S., & Curtin, T. (2009). The selective oxidation of ammonia using copper-based catalysts: The effects of water. Catalysis Today, 145(1-2), 85-89. doi:10.1016/j.cattod.2008.06.017

Macina, D., Opioła, A., Rutkowska, M., Basąg, S., Piwowarska, Z., Michalik, M., & Chmielarz, L. (2017). Mesoporous silica materials modified with aggregated transition metal species (Cr, Fe and Cr-Fe) in the role of catalysts for selective catalytic oxidation of ammonia to dinitrogen. Materials Chemistry and Physics, 187, 60-71. doi:10.1016/j.matchemphys.2016.11.047

Van Donk, S., Janssen, A. H., Bitter, J. H., & de Jong, K. P. (2003). Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts. Catalysis Reviews, 45(2), 297-319. doi:10.1081/cr-120023908

Pérez-Ramírez, J., Christensen, C. H., Egeblad, K., Christensen, C. H., & Groen, J. C. (2008). Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 37(11), 2530. doi:10.1039/b809030k

Čejka, J., Centi, G., Perez-Pariente, J., & Roth, W. J. (2012). Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems. Catalysis Today, 179(1), 2-15. doi:10.1016/j.cattod.2011.10.006

Egeblad, K., Christensen, C. H., Kustova, M., & Christensen, C. H. (2007). Templating Mesoporous Zeolites. Chemistry of Materials, 20(3), 946-960. doi:10.1021/cm702224p

Chal, R., Gérardin, C., Bulut, M., & van Donk, S. (2010). Overview and Industrial Assessment of Synthesis Strategies towards Zeolites with Mesopores. ChemCatChem, 3(1), 67-81. doi:10.1002/cctc.201000158

Serrano, D. P., Escola, J. M., & Pizarro, P. (2013). Synthesis strategies in the search for hierarchical zeolites. Chem. Soc. Rev., 42(9), 4004-4035. doi:10.1039/c2cs35330j

Feliczak-Guzik, A. (2018). Hierarchical zeolites: Synthesis and catalytic properties. Microporous and Mesoporous Materials, 259, 33-45. doi:10.1016/j.micromeso.2017.09.030

Liu, Y., Zhang, W., & Pinnavaia, T. J. (2000). Steam-Stable Aluminosilicate Mesostructures Assembled from Zeolite Type Y Seeds. Journal of the American Chemical Society, 122(36), 8791-8792. doi:10.1021/ja001615z

Serrano, D. P., Pinnavaia, T. J., Aguado, J., Escola, J. M., Peral, A., & Villalba, L. (2014). Hierarchical ZSM-5 zeolites synthesized by silanization of protozeolitic units: Mediating the mesoporosity contribution by changing the organosilane type. Catalysis Today, 227, 15-25. doi:10.1016/j.cattod.2013.10.052

Serrano, D. P., García, R. A., Vicente, G., Linares, M., Procházková, D., & Čejka, J. (2011). Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units. Journal of Catalysis, 279(2), 366-380. doi:10.1016/j.jcat.2011.02.007

Xia, Y., & Mokaya, R. (2004). Are mesoporous silicas and aluminosilicas assembled from zeolite seeds inherently hydrothermally stable? Comparative evaluation of MCM-48 materials assembled from zeolite seeds. Journal of Materials Chemistry, 14(23), 3427. doi:10.1039/b408960j

Yang, J., Yu, S., Hu, H., Zhang, Y., Lu, J., Wang, J., & Yin, D. (2011). Synthesis of ZSM-5 hierarchical microsphere-like particle by two stage varying temperature crystallization without secondary template. Chemical Engineering Journal, 166(3), 1083-1089. doi:10.1016/j.cej.2010.11.071

Petushkov, A., Yoon, S., & Larsen, S. C. (2011). Synthesis of hierarchical nanocrystalline ZSM-5 with controlled particle size and mesoporosity. Microporous and Mesoporous Materials, 137(1-3), 92-100. doi:10.1016/j.micromeso.2010.09.001

Van Oers, C. J., Stevens, W. J. J., Bruijn, E., Mertens, M., Lebedev, O. I., Van Tendeloo, G., … Cool, P. (2009). Formation of a combined micro- and mesoporous material using zeolite Beta nanoparticles. Microporous and Mesoporous Materials, 120(1-2), 29-34. doi:10.1016/j.micromeso.2008.08.056

Huang, L., Wang, Z., Wang, H., Sun, J., Li, Q., Zhao, D., & Yan, Y. (2001). Hierarchical porous structures by using zeolite nanocrystals as building blocks. Microporous and Mesoporous Materials, 48(1-3), 73-78. doi:10.1016/s1387-1811(01)00332-8

Li, C., Wang, Y., Shi, B., Ren, J., Liu, X., Wang, Y., … Lu, G. (2009). Synthesis of hierarchical MFI zeolite microspheres with stacking nanocrystals. Microporous and Mesoporous Materials, 117(1-2), 104-110. doi:10.1016/j.micromeso.2008.06.017

Stevens, W. J. J., Meynen, V., Bruijn, E., Lebedev, O. I., Van Tendeloo, G., Cool, P., & Vansant, E. F. (2008). Mesoporous material formed by acidic hydrothermal assembly of silicalite-1 precursor nanoparticles in the absence of meso-templates. Microporous and Mesoporous Materials, 110(1), 77-85. doi:10.1016/j.micromeso.2007.09.007

Van Oers, C. J., Kurttepeli, M., Mertens, M., Bals, S., Meynen, V., & Cool, P. (2014). Zeolite β nanoparticles based bimodal structures: Mechanism and tuning of the porosity and zeolitic properties. Microporous and Mesoporous Materials, 185, 204-212. doi:10.1016/j.micromeso.2013.11.021

Rutkowska, M., Piwowarska, Z., Micek, E., & Chmielarz, L. (2015). Hierarchical Fe-, Cu- and Co-Beta zeolites obtained by mesotemplate-free method. Part I: Synthesis and catalytic activity in N2O decomposition. Microporous and Mesoporous Materials, 209, 54-65. doi:10.1016/j.micromeso.2014.10.011

Rutkowska, M., Duda, M., Kowalczyk, A., & Chmielarz, L. (2017). Modification of the physicochemical properties of the commercial CHA zeolite and examination of its activity in nitrogen oxide abatement. Comptes Rendus Chimie, 20(8), 850-859. doi:10.1016/j.crci.2017.05.001

Rutkowska, M., Pacia, I., Basąg, S., Kowalczyk, A., Piwowarska, Z., Duda, M., … Chmielarz, L. (2017). Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH 3 -SCR and NH 3 -SCO processes. Microporous and Mesoporous Materials, 246, 193-206. doi:10.1016/j.micromeso.2017.03.017

Rutkowska, M., Díaz, U., Palomares, A. E., & Chmielarz, L. (2015). Cu and Fe modified derivatives of 2D MWW-type zeolites (MCM-22, ITQ-2 and MCM-36) as new catalysts for DeNO x process. Applied Catalysis B: Environmental, 168-169, 531-539. doi:10.1016/j.apcatb.2015.01.016

Góra-Marek, K., Brylewska, K., Tarach, K. A., Rutkowska, M., Jabłońska, M., Choi, M., & Chmielarz, L. (2015). IR studies of Fe modified ZSM-5 zeolites of diverse mesopore topologies in the terms of their catalytic performance in NH3-SCR and NH3-SCO processes. Applied Catalysis B: Environmental, 179, 589-598. doi:10.1016/j.apcatb.2015.05.053

Rouquerol, J., Llewellyn, P., & Rouquerol, F. (2007). Is the bet equation applicable to microporous adsorbents? Characterization of Porous Solids VII - Proceedings of the 7th International Symposium on the Characterization of Porous Solids (COPS-VII), Aix-en-Provence, France, 26-28 May 2005, 49-56. doi:10.1016/s0167-2991(07)80008-5

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. doi:10.1515/pac-2014-1117

Shen, Q., Li, L., He, C., Zhang, X., Hao, Z., & Xu, Z. (2011). Cobalt zeolites: Preparation, characterization and catalytic properties for N2O decomposition. Asia-Pacific Journal of Chemical Engineering, 7(4), 502-509. doi:10.1002/apj.599

Maes, N., & Vansant, E. F. (1995). Study of Fe2O3-pillared clays synthesized using the trinuclear Fe(III)-acetato complex as pillaring precursor. Microporous Materials, 4(1), 43-51. doi:10.1016/0927-6513(94)00080-f

Garbowski, E. D., & Mirodatos, C. (1982). Investigation of structural charge transfer in zeolites by UV spectroscopy. The Journal of Physical Chemistry, 86(1), 97-102. doi:10.1021/j100390a019

Wang, A., Wang, Y., Walter, E. D., Kukkadapu, R. K., Guo, Y., Lu, G., … Gao, F. (2018). Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts. Journal of Catalysis, 358, 199-210. doi:10.1016/j.jcat.2017.12.011

Xia, Y., Zhan, W., Guo, Y., Guo, Y., & Lu, G. (2016). Fe-Beta zeolite for selective catalytic reduction of NOx with NH3: Influence of Fe content. Chinese Journal of Catalysis, 37(12), 2069-2078. doi:10.1016/s1872-2067(16)62534-2

Cheng, Y., Zhang, F., Zhang, Y., Miao, C., Hua, W., Yue, Y., & Gao, Z. (2015). Oxidative dehydrogenation of ethane with CO2 over Cr supported on submicron ZSM-5 zeolite. Chinese Journal of Catalysis, 36(8), 1242-1248. doi:10.1016/s1872-2067(15)60893-2

Wang, J., Xie, J., Zhou, Y., & Wang, J. (2013). New facile way to isomorphously substituted Cr-β zeolite and its catalytic performance. Microporous and Mesoporous Materials, 171, 87-93. doi:10.1016/j.micromeso.2012.12.027

Esquivel, D., Cruz-Cabeza, A. J., Jiménez-Sanchidrián, C., & Romero-Salguero, F. J. (2013). Transition metal exchanged β zeolites: Characterization of the metal state and catalytic application in the methanol conversion to hydrocarbons. Microporous and Mesoporous Materials, 179, 30-39. doi:10.1016/j.micromeso.2013.05.013

Putluru, S. S. R., Jensen, A. D., Riisager, A., & Fehrmann, R. (2011). Alkali Resistant Fe-Zeolite Catalysts for SCR of NO with NH3 in Flue Gases. Topics in Catalysis, 54(16-18), 1286-1292. doi:10.1007/s11244-011-9750-6

GUZMANVARGAS, A. (2003). Catalytic decomposition of N2O and catalytic reduction of N2O and N2O + NO by NH3 in the presence of O2 over Fe-zeolite. Applied Catalysis B: Environmental, 42(4), 369-379. doi:10.1016/s0926-3373(02)00268-0

Ayari, F., Mhamdi, M., Hammedi, T., Álvarez-Rodríguez, J., Guerrero-Ruiz, A. R., Delahay, G., & Ghorbel, A. (2012). Influence of the parent zeolite structure on chromium speciation and catalytic properties of Cr-zeolite catalysts in the ethylene ammoxidation. Applied Catalysis A: General, 439-440, 88-100. doi:10.1016/j.apcata.2012.06.037

Liu, P., Zhang, X., Yao, Y., & Wang, J. (2009). Pt catalysts supported on β zeolite ion-exchanged with Cr(III) for hydroisomerization of n-heptane. Applied Catalysis A: General, 371(1-2), 142-147. doi:10.1016/j.apcata.2009.09.045

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem