- -

A Note on Supercyclic Operators in Locally Convex Spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A Note on Supercyclic Operators in Locally Convex Spaces

Show full item record

Albanese, AA.; Jornet Casanova, D. (2019). A Note on Supercyclic Operators in Locally Convex Spaces. Mediterranean Journal of Mathematics. 16(5):1-10. https://doi.org/10.1007/s00009-019-1386-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159523

Files in this item

Item Metadata

Title: A Note on Supercyclic Operators in Locally Convex Spaces
Author: Albanese, Angela A. Jornet Casanova, David
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] We treat some questions related to supercyclicity of continuous linear operators when acting in locally convex spaces. We extend results of Ansari and Bourdon and consider doubly power bounded operators in this general ...[+]
Subjects: Supercyclic operators , Doubly power bounded operators , Isometry , Locally convex spaces
Copyrigths: Reserva de todos los derechos
Source:
Mediterranean Journal of Mathematics. (issn: 1660-5446 )
DOI: 10.1007/s00009-019-1386-y
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s00009-019-1386-y
Project ID:
info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/
Thanks:
We are indebted to Prof. Jose Bonet for his helpful suggestions on the topic of this paper. The authors were partially supported by the project MTM2016-76647-P.
Type: Artículo

References

Abramovich, Y.A., Aliprantis, C.D.: An invitation to operator theory, volume 50 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2002)

Aleman, A., Suciu, L.: On ergodic operator means in Banach spaces. Integr. Equ. Op. Theory 85(2), 259–287 (2016)

Ansari, S.I., Bourdon, P.S.: Some properties of cyclic operators. Acta Sci. Math. (Szeged) 63(1–2), 195–207 (1997) [+]
Abramovich, Y.A., Aliprantis, C.D.: An invitation to operator theory, volume 50 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2002)

Aleman, A., Suciu, L.: On ergodic operator means in Banach spaces. Integr. Equ. Op. Theory 85(2), 259–287 (2016)

Ansari, S.I., Bourdon, P.S.: Some properties of cyclic operators. Acta Sci. Math. (Szeged) 63(1–2), 195–207 (1997)

Bayart, F., Matheron, E.: Dynamics of linear operators, volume 179 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2009)

Beltrán, M.J., Bonet, J., Fernández, C.: Classical operators on the Hörmander algebras. Discret. Contin. Dyn. Syst. 35(2), 637–652 (2015)

Bonet, J., Domański, P.: A note on mean ergodic composition operators on spaces of holomorphic functions. Rev. R. Acad. Cienc. Exact. Fís. Nat. Ser. A Math. RACSAM 105(2), 389–396 (2011)

Bonet, J., Domański, P.: Power bounded composition operators on spaces of analytic functions. Collect. Math. 62(1), 69–83 (2011)

Bourdon, P.S., Feldman, N.S., Shapiro, J.H.: Some properties of $$N$$-supercyclic operators. Studia Math. 165(2), 135–157 (2004)

Fernández, C., Galbis, A., Jordá, E.: Dynamics and spectra of composition operators on the Schwartz space. J. Funct. Anal. 274(12), 3503–3530 (2018)

Galbis, A., Jordá, E.: Composition operators on the Schwartz space. Rev. Math. Iberoam. 34(1), 397–412 (2018)

Lorch, E.R.: The integral representation of weakly almost-periodic transformations in reflexive vector spaces. Trans. Am. Math. Soc. 49, 18–40 (1941)

Meise, R., Vogt, D.: Introduction to functional analysis. Oxford Graduate Texts in Mathematics, vol. 2. The Clarendon Press, Oxford University Press, New York (1997). (Translated from the German by M. S. Ramanujan and revised by the authors.)

Müller, V.: Power bounded operators and supercyclic vectors. Proc. Am. Math. Soc. 131(12), 3807–3812 (2003)

Müller, V.: Power bounded operators and supercyclic vectors. II. Proc. Am. Math. Soc. 133(10), 2997–3004 (2005)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record