Desde el lunes 3 y hasta el jueves 20 de marzo, RiuNet funcionará en modo de solo lectura a causa de su actualización a una nueva versión.
Mostrar el registro sencillo del ítem
dc.contributor.author | Guardiola, Carlos![]() |
es_ES |
dc.contributor.author | Pla Moreno, Benjamín![]() |
es_ES |
dc.contributor.author | Bares-Moreno, Pau![]() |
es_ES |
dc.contributor.author | Peyton Jones, J.C.![]() |
es_ES |
dc.date.accessioned | 2021-01-20T04:31:56Z | |
dc.date.available | 2021-01-20T04:31:56Z | |
dc.date.issued | 2019-09-15 | es_ES |
dc.identifier.issn | 0888-3270 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159524 | |
dc.description.abstract | [EN] A novel technique of trapped mass determination, based on the in-cylinder pressure resonance, has been recently published by the authors. However, the method only works when sufficient resonance intensity exists and the current formulation might preclude its implementation in real-time due to excessive computational burden. The present paper proposes an iterative algorithm for reducing the number of operations, an adaptive filter to identify faulty measurements and a Kalman filter that combines several sensors and models, currently used in commercial light-duty engines, to ensure a continous estimation of trapped mass, air mass, and exhaust gas recirculation (EGR). The filter is implemented using experimental data of a EURO 6 light-duty engine in a world harmonize light-duty test cycle (WLTC), showing the potential of being implemented in real driving conditions with robustness and harnessing a new measurement to improve the accuracy and response of current estimations. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Mechanical Systems and Signal Processing | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Resonance | es_ES |
dc.subject | Internal combustion engines | es_ES |
dc.subject | Signal processing | es_ES |
dc.subject | Observer | es_ES |
dc.subject | Kalman filter | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Integration of intermittent measurement from in-cylinder pressure resonance in a multi-sensor mass flow estimator | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ymssp.2019.05.052 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Guardiola, C.; Pla Moreno, B.; Bares-Moreno, P.; Peyton Jones, J. (2019). Integration of intermittent measurement from in-cylinder pressure resonance in a multi-sensor mass flow estimator. Mechanical Systems and Signal Processing. 131:152-165. https://doi.org/10.1016/j.ymssp.2019.05.052 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ymssp.2019.05.052 | es_ES |
dc.description.upvformatpinicio | 152 | es_ES |
dc.description.upvformatpfin | 165 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 131 | es_ES |
dc.relation.pasarela | S\402262 | es_ES |
dc.description.references | Broatch, A., Guardiola, C., Pla, B., & Bares, P. (2015). A direct transform for determining the trapped mass on an internal combustion engine based on the in-cylinder pressure resonance phenomenon. Mechanical Systems and Signal Processing, 62-63, 480-489. doi:10.1016/j.ymssp.2015.02.023 | es_ES |
dc.description.references | Guardiola, C., Triantopoulos, V., Bares, P., Bohac, S., & Stefanopoulou, A. (2016). Simultaneous Estimation of Intake and Residual Mass Using In-Cylinder Pressure in an Engine with Negative Valve Overlap. IFAC-PapersOnLine, 49(11), 461-468. doi:10.1016/j.ifacol.2016.08.068 | es_ES |
dc.description.references | Guardiola, C., Martín, J., Pla, B., & Bares, P. (2017). Cycle by cycle NOx model for diesel engine control. Applied Thermal Engineering, 110, 1011-1020. doi:10.1016/j.applthermaleng.2016.08.170 | es_ES |
dc.description.references | Bares, P., Selmanaj, D., Guardiola, C., & Onder, C. (2018). Knock probability estimation through an in-cylinder temperature model with exogenous noise. Mechanical Systems and Signal Processing, 98, 756-769. doi:10.1016/j.ymssp.2017.05.033 | es_ES |
dc.description.references | Xu, K.-J., Zhang, J., Wang, X.-F., Teng, Q., Tan, J., & Zhang, Y.-Y. (2008). Improvements of nonlinear dynamic modeling of hot-film MAF sensor. Sensors and Actuators A: Physical, 147(1), 34-40. doi:10.1016/j.sna.2008.03.003 | es_ES |
dc.description.references | Liu, Z., & Wang, C. (2015). An LPV Adaptive Observer for Updating a Map Applied to an MAF Sensor in a Diesel Engine. Sensors, 15(10), 27142-27159. doi:10.3390/s151027142 | es_ES |
dc.description.references | Macián, V., Luján, J. M., Guardiola, C., & Perles, A. (2006). A comparison of different methods for fuel delivery unevenness detection in Diesel engines. Mechanical Systems and Signal Processing, 20(8), 2219-2231. doi:10.1016/j.ymssp.2005.04.001 | es_ES |
dc.description.references | Luján, J. M., Climent, H., Pla, B., Rivas-Perea, M. E., François, N.-Y., Borges-Alejo, J., & Soukeur, Z. (2015). Exhaust gas recirculation dispersion analysis using in-cylinder pressure measurements in automotive diesel engines. Applied Thermal Engineering, 89, 459-468. doi:10.1016/j.applthermaleng.2015.06.029 | es_ES |
dc.description.references | Luján, J. M., Galindo, J., Serrano, J. R., & Pla, B. (2008). A methodology to identify the intake charge cylinder-to-cylinder distribution in turbocharged direct injection Diesel engines. Measurement Science and Technology, 19(6), 065401. doi:10.1088/0957-0233/19/6/065401 | es_ES |
dc.description.references | Payri, F., Lujan, J., Climent, H., & Pla, B. (2010). Effects of the Intake Charge Distribution in HSDI Engines. SAE Technical Paper Series. doi:10.4271/2010-01-1119 | es_ES |
dc.description.references | Chevalier, A., Müller, M., & Hendricks, E. (2000). On the Validity of Mean Value Engine Models During Transient Operation. SAE Technical Paper Series. doi:10.4271/2000-01-1261 | es_ES |
dc.description.references | Kao, M., & Moskwa, J. J. (1995). Turbocharged Diesel Engine Modeling for Nonlinear Engine Control and State Estimation. Journal of Dynamic Systems, Measurement, and Control, 117(1), 20-30. doi:10.1115/1.2798519 | es_ES |
dc.description.references | Hendricks, E., Chevalier, A., Jensen, M., Sorenson, S. C., Trumpy, D., & Asik, J. (1996). Modelling of the Intake Manifold Filling Dynamics. SAE Technical Paper Series. doi:10.4271/960037 | es_ES |
dc.description.references | Fons, M., Muller, M., Chevalier, A., Vigild, C., Hendricks, E., & Sorenson, S. C. (1999). Mean Value Engine Modelling of an SI Engine with EGR. SAE Technical Paper Series. doi:10.4271/1999-01-0909 | es_ES |
dc.description.references | Hendricks, E., Vesterholm, T., & Sorenson, S. C. (1992). Nonlinear, Closed Loop, SI Engine Control Observers. SAE Technical Paper Series. doi:10.4271/920237 | es_ES |
dc.description.references | Junfeng Zhao, & Junmin Wang. (2015). Adaptive Observer for Joint Estimation of Oxygen Fractions and Blend Level in Biodiesel Fueled Engines. IEEE Transactions on Control Systems Technology, 23(1), 80-90. doi:10.1109/tcst.2014.2313003 | es_ES |
dc.description.references | Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82(1), 35-45. doi:10.1115/1.3662552 | es_ES |
dc.description.references | Polóni, T., Rohaľ-Ilkiv, B., & Arne Johansen, T. (2014). Mass flow estimation with model bias correction for a turbocharged Diesel engine. Control Engineering Practice, 23, 22-31. doi:10.1016/j.conengprac.2013.10.011 | es_ES |
dc.description.references | Kyrtatos, P., Hoyer, K., Obrecht, P., & Boulouchos, K. (2013). Apparent effects of in-cylinder pressure oscillations and cycle-to-cycle variability on heat release rate and soot concentration under long ignition delay conditions in diesel engines. International Journal of Engine Research, 15(3), 325-337. doi:10.1177/1468087413483288 | es_ES |
dc.description.references | Kyrtatos, P., Brückner, C., & Boulouchos, K. (2016). Cycle-to-cycle variations in diesel engines. Applied Energy, 171, 120-132. doi:10.1016/j.apenergy.2016.03.015 | es_ES |
dc.description.references | Guardiola, C., Pla, B., Bares, P., & Barbier, A. (2018). An analysis of the in-cylinder pressure resonance excitation in internal combustion engines. Applied Energy, 228, 1272-1279. doi:10.1016/j.apenergy.2018.06.157 | es_ES |
dc.description.references | Payri, F., Broatch, A., Tormos, B., & Marant, V. (2005). New methodology for in-cylinder pressure analysis in direct injection diesel engines—application to combustion noise. Measurement Science and Technology, 16(2), 540-547. doi:10.1088/0957-0233/16/2/029 | es_ES |